Northern University, Nowshera

Programming Fundamentals (ECS-121)

Muhammad Athar email id: athar@northern.edu.pk, Whatsapp# 0333-5077664

Objectives:

(Week 13) Lecture 25 and 26

Learning objectives of this lecture are

Functions
Why functions?
Advantages of functions.

Parameterized and function return type.

mailto:athar@northern.edu.pk

Northern University, Nowshera

Programming Fundamentals (ECS-121)

Muhammad Athar email id: athar@northern.edu.pk, Whatsapp# 0333-5077664

Lecture # 25 Functions

So far we have discussed different type of program involving conditional statement,
loops, arrays and structures. We shall be discussing function in this lecture. Following functions
come into mind. Why we need functions? How to make them? How to use them? What are
advantages of functions? To get answer of this question let us look at a simple program that does

not involves functions. Given below is the statement of program.
Statement.

Consider a scenario where you are supposed to make a menu driven program for package
description of cellular company. You have to display menu for subscription of call, SMS and

internet packages. Cellular company wants you to display following menu in a sequence.
= Press C for call subscription.
= Press S for SMS subscription.
= Press | for internet subscription.

After user have entered a valid input from above menu. Display menu given below.
= Press d for daily package.
= Press w for weekly package.
= Press m for monthly package.

After both inputs are valid from above choice display following statement.

you have subscribed monthly package for call.

Note that above message is dependent on user input.

Solution:

#include "iostream"
using namespace std;
void main(){

char opt;

mailto:athar@northern.edu.pk

Northern University, Nowshera

Muhammad Athar

Programming Fundamentals (ECS-121)

email id: athar@northern.edu.pk,

cout << "Press C for call\n";

cout << "Press S for SMS\n";

cout << "Press I for internet\n";

cin >> opt;
if (opt == 'C")
{

cout << "Press D for daily";
cout << "Press M for monthly";
cout << "Press I for internet";

cin >> opt;
if (opt == 'D')

cout<<"Subscribe daily call";

else if (opt == 'M")

cout<<"Subscribe monthly call";

else if (opt == 'W")

cout<<"Subscribe weekly call";

else
cout << "Wrrong";

else
cout << "Wrrong";

}//end of main

else if (opt == 'S")

cout << "Press D for daily";
cout << "Press M for monthly";
cout << "Press I for internet”;
cin >> opt;

if (opt == 'D')
cout<<"Subscribe daily SMS";
else if (opt == 'M")
cout<<"Subscribe monthly SMS";
else if (opt == 'W")
cout<<"Subscribe weekly SMS";
else

cout << "Wrrong";

if (opt

{
cout << "Press D for daily\n"; _—— }
cout << "Press W for weekly\n"; _
cout << "Press M for monthly\n"; T {

\\\I }
\\\
s
1
™
b3

cout << "Press D for daily";
cout << "Press M for monthly";
cout << "Press I for internet";

Whatsapp# 0333-5077664

else if (opt == 'I")

cout << "Press D for daily";
cout << "Press M for monthly";
cout << "Press I for internet”;
cin >> opt;

if (opt == 'D")
cout<<"Subscribe daily net";
else if (opt == 'M")
cout<<"Subscribe monthly net";
else if (opt == 'W")
cout<<"Subscribe weekly net";
else

cout << "Wrrong";

Analyze that above three statement is written 9 times in three different if matching C, S and W.

Why not write it once? And use it in each block. How it is done? It is done through functions.

Let us discuss functions.

Components of Function:

1. Declaration of function.

mailto:athar@northern.edu.pk

Northern University, Nowshera

Programming Fundamentals (ECS-121)

Muhammad Athar email id: athar@northern.edu.pk, Whatsapp# 0333-5077664

2. Definition of function.
3. Calling function.

Declaration of function:

A function declaration consist of further three portions

1. Return type of function.
2. Name of function.
3. Parameters.

return type name of finction parameter.

void display () ;

Return type Meaning

void Function will not return any value

int Function will return an integer value.

float Function will return a float value.

double Function will return boolean value

long Function will return long type value.

short Function returns a short type value.

string Function returns string type value.

User defined type Function will return a user defined type. (Mentioned in return type
portion)

name of function must be meaningful and same rule should be applied on name as that of
variable. Parameter of function is mention in parenthesis () if parenthesis is empty it means
function is parameter less. Inside these parenthesis variable can be declared which we will see in
lecture number 26. Function declaration is also known as function proto type or signature of a
function. We will declare function above main. Figure given below further explains function

declaration.

mailto:athar@northern.edu.pk

Northern University, Nowshera

Programming Fundamentals (ECS-121)

Muhammad Athar email id: athar@northern.edu.pk, Whatsapp# 0333-5077664
- = - - - - . -
wvoid | name |[()|
| return typc‘.tof a function | | Name of a function | | Parenthesis |
void means fl:l'll:tial'l returns nothing. J'

int means function will return int value.

char means function will return char value. mentions

Inside this programr'ner‘

float means function will return float value.

parameters(variables) list
nNon primitive types also. f

l Empty brack;ts means no ‘
Built In + User defined types parameters.
Figure 1 Function Declaration
- d d : 1 - Signature of a function.
void display();

Prototype of a function

Definition of Function:

So far we have written definition of main function. Now let us define a function name display

that contains three cout statements as given below.

cout << "Press D for daily";
cout << "Press M for monthly";
cout << "Press I for internet";

void display ()
{

cout << "Press D for daily";
cout << "Press M for monthly";
cout << "Press I for internet";

}
Definition of functions contains body and inside body of function code/functionality of function

is written. Function can be define after main (if declared) and above main (if not declared).

mailto:athar@northern.edu.pk

Northern University, Nowshera

Programming Fundamentals (ECS-121)

Muhammad Athar email id: athar@northern.edu.pk, Whatsapp# 0333-5077664

void display()

cout << "Press D for daily\n"; I If declared than define after main.

cout << "Press W for weekly\n";

cout << "Press M for monthly\n"; If not declared than define above.

}

Figure 2 Function definition

Calling Function:

Function is called by its name for example if we call display function we will be calling as

display ();

Note: When function is called control shifts to the body of function. After executing function it

returns to the point from where function is called. Figure given below explains function call.

. Must be defined before calling.

display ();

When function is called control shifts into body of a function, where it
is defined.

After executing body function returns back from where it is called.

Figure 3 Function call

Now let us solve above program with function.

Solution of program with function:

#include "iostream"
using namespace std;
void display(); // declaration
void main(){
char opt;
cout << "Press C for call\n";
cout << "Press S for SMS\n";
cout << "Press I for internet\n";
cin >> opt;
if (opt == 'C") else if (opt == 'S") else if (opt == 'I'")

{ {
display(); display(); display();
cin >> opt;
if (opt == 'D'") cin >> opt; cin >> opt;

mailto:athar@northern.edu.pk

Northern University, Nowshera

Programming Fundamentals (ECS-121)

Muhammad Athar email id: athar@northern.edu.pk, Whatsapp# 0333-5077664
cout<<"Subscribe daily call"; if (opt == 'D") if (opt == 'D")
else if (opt == 'M") cout<<"Subscribe daily SMS"; cout<<"Subscribe daily net";
cout<<"Subscribe monthly call"; else if (opt == 'M") else if (opt == 'M")
else if (opt == 'W") cout<<"Subscribe monthly SMS"; cout<<"Subscribe monthly net";
cout<<"Subscribe weekly call"; else if (opt == 'W") else if (opt == '"W")
else cout<<"Subscribe weekly SMS"; cout<<"Subscribe weekly net";

cout << "Wrrong"; else else
} cout << "Wrrong"; cout << "Wrrong";
} }
else

cout << "Wrrong";

}//end of main
void display()

{

cout << "Press D for daily";
cout << "Press M for monthly";
cout << "Press I for internet";

}

Note that in above program instead of writing statements again and again it’s written in a
function and is called. If in above program definition of display is moved above main than there

is no need of declaration. Instead if declaration we can just write definition of a function.

Advantages of Function:

Code reusability (Writing code once and using it again)
Organized code (Code written in function is organized as compared to written without function.)

Increase Program readability. (Easy in reading and tracing problem)

Lol A

Easy maintenance (Code is easily in maintenance because if error occurs we can direct to function
having problem.

Local Variables of a function

When a function is called a memory in stack is allocated to it and all variables inside body of function are
considered its local variable. Local variable are not directly accessible in a another function. And when
function execution is finished memory is taken from function and its local variables are destroyed. Figure

given below further explains it.

mailto:athar@northern.edu.pk

Northern University, Nowshera

Programming Fundamentals (ECS-121)

Muhammad Athar email id: athar@northern.edu.pk,

Whatsapp# 0333-5077664

#include "iostream"
using namespace std;
void add() ’

{

int numl, num2;

cin >> numl >> num2;
int sum = numl + num2;

}

void main()

{
int numl, num2;
cin »> numl >> num2;
int sum = numl + num2;
add();

add

numl(KLH)

15

num2 (KJB)

10

sum(AIKLH)

25

main

numl(AFH) num2 (A12H)

25

35

sum(AB34)

60

Figure 4 Local variable of function.

In above figure there are two functions main and add both of them having three variables with name

numl, num2 and sum but note that num1 of main has different memory address than num1 of add

function inside add function when cin >> num1 >>num2; is executed it takes input in KLH and KJB

memory respectively and same statement when executed in main it takes input in AFH and A12H. Note

that every time a function is called new memory is allocated to its variables.

mailto:athar@northern.edu.pk

Northern University, Nowshera

Programming Fundamentals (ECS-121)

Muhammad Athar email id: athar@northern.edu.pk, Whatsapp# 0333-5077664

Lecture # 26 Functions with return type and Parameters

In lecture number 23 we started studying functions, and have discussed function having
void return type (that is function not returning any value) and has no parameters. In this lecture
we shall be discussing about function having return type also we will be discussing parametrized
function. Let us discuss a key word.

Key word return: when a return statement is executed a function is returned to the point from

where it is called. We will be looking at different figures for getting better understanding of
return keyword.

void main()

{ . .

cout << "First Line\n"; First Line
cout << "Second Line\n"; Second Line
oreturn;

(cout << "Third Line\n";
. cout << "Fourth Line\n";

}

b

These statement will not be executed.

Figure 1 return with void return type

When a return statement is executed function goes back to the point from where it is called in

above case program will be terminated.

mailto:athar@northern.edu.pk

Northern University, Nowshera

Programming Fundamentals (ECS-121)

Muhammad Athar email id: athar@northern.edu.pk, Whatsapp# 0333-5077664
void print() void main()
t {
cout << "PFA\n"; cout << "Calling function\n";
cout << "C++\n"; print();
Empreturn; _ cout << "After function call\n";
cout << "Programing\n"; }
cout << "JAVA\n";
}

In above program firs line of main is executed and Calling function is printed after that there is a
call to function print in function print first two statements are executed and a third statement is a
return statement when return statement is executed function goes back to point from where it is

called in this case function will return to its call in main and after that next line will be executed.

int main()

{

cout << "First Line\n";

cout << "Second Line\n";
cout << "Third Line\n";

cout << "Fourth Line\n";

¥

@

A function having return type other than
void must return a value. Value return
must be same as return type. In this
case value return will be integer.

Now in above case main is having a return type int for a function having return type other than

main its compulsory for function to return a value. Now if we write return as given below.

mailto:athar@northern.edu.pk

Northern University, Nowshera

Programming Fundamentals (ECS-121)

Muhammad Athar email id: athar@northern.edu.pk, Whatsapp# 0333-5077664

int main()

{

cout << "First Line\n";
cout << "Second Line\n";
cout << "Third Line\n";
cout << "Fourth Line\n";

return;

¥

Still error because this function is
returning an integer value. however in
above case with return no value is
provided

Still an error as simple return statement is not enough because simple return is written that means

function is not returning any value. in this case function must return an integer as given below.

int main()

{

cout << "First Line\n";
cout << "Second Line\n";
cout << "Third Line\n";
cout << "Fourth Line\n";

return 15;

¥

Now it is correct as with return
statement value is provided. Note this
value must be same as return type of a
function.

Now it is correct as function is returning a value 15. Instead of 15 there could be any value.

mailto:athar@northern.edu.pk

Northern University, Nowshera

Programming Fundamentals (ECS-121)

Muhammad Athar email id: athar@northern.edu.pk, Whatsapp# 0333-5077664

void main()

return 20;

‘,

Error because function having return type
void should not return a value.

}

Above statement is an error because a function having return type void cannot return a value.

it funcl() void main()
{
. {
return 15; -
return 1; -}Pfunc:l(), // 15 is returned

return 2;

Note: A function returns one and only one value.

In above program funcl() returns 15, 1 and 2 but the first return value is returned so no matters

how many return statements are written when return statement is executed it gets back to the

point from where it is called.

int f 1

%n et void main()
return 1; } R Y \1______ N ______3/
return 2;

mailto:athar@northern.edu.pk

Northern University, Nowshera

Programming Fundamentals (ECS-121)

Muhammad Athar email id: athar@northern.edu.pk, Whatsapp# 0333-5077664

In main two function are added do not read it like that actually it is a call to two functions

having + operator in between them. In this case funcl is called two times. Operand of + will be

values returned by funcl.

int funcl() void main()

{ {
return 15;

int x = funcl(); // returned 15;

return 2; } X

} 15

return 1;

Value returned by function can be assigned to variable also as mentioned above.

void func2() /int y = func2 () 1

{ \ ,
/] some code x= funcl() + func2();

Error as function is not

returning any value

Error as func2 is not
returning any value for
addition.

If return type of function is void it cannot be assigned to a variable of any type. However if
return type is mentioned it is assigned to the data type compatible with return type. Sam no
arithmetic operation is applied if return type is void or not compatible with arithmetic operator.

Parametrized function

Parameter can be as value and reference. In this lecture we will just discuss about by value.

Write a function pintsquare that receives int type parameter.

mailto:athar@northern.edu.pk

Northern University, Nowshera

Programming Fundamentals (ECS-121)

Muhammad Athar email id: athar@northern.edu.pk, Whatsapp# 0333-5077664
Prototype Calling
void printsquare(int); printsquare()x
void printsquare(int x); * What is problem with above calling?
2

Provide value for parameter

Defining a function -
printsquare(20);
|

void printsquare(int x)
{ e SO
X = X * x; '

= Parameters Arguments.
cout << x << endl;

Figure 2 Parameterized Function

Above function explains parameterized function how to call it and what is parameter and
argument? Value provided to parameter while calling is called argument note that parameter pass
by value is a local variable of a function.

void add(int x,int v)

{ int a = 4, b = 9;

int sum;
sum = X + Y; add(a, b); J

cout << sum << endl;

}

void main() add (5 b)__J
{ E 2>
add(); AL J
add(9);x add(b, 5); ™%

add(, 10); X&

Figure 3 Call of parameterized function

Program 1: Make a function with name getsquare that receives integer type parameter and

returns its square.

mailto:athar@northern.edu.pk

Northern University, Nowshera

Programming Fundamentals (ECS-121)

Muhammad Athar email id: athar@northern.edu.pk, Whatsapp# 0333-5077664
Solution:
getsquare
int getsquare(int x) //int x=10 X
{ 10
return x X;//10 * 10;=> 100;
}
void main()
{ main
int n , sqgr; n sqr
: 190 100
cin >> n;
sqr = getsquare(n); // 100 is returned;
} 10 is passed to x

Solution with memory picture.

Program 2: Input total marks and obtained marks of pf and ds. While taking total marks as input ensure
that total marks must be less than or equal to 100 and greater than equal to 30. If total marks entered are
greater than 100 or less than 30 reenter marks, also ensure that obtained marks are less than equal to total

marks and are not negative.

Solution without function:

#include "iostream"
using namespace std;
void main()
{
int pftotal, dstotal;
int pfobtain, dsobtain;
cout << "Enter pf total ";
cin >> pftotal;
while (pftotal < 30 || pftotal >100)
{
cout << "Invalid re-enter ";
cin >> pftotal;
}
cout << "Enter ds total ";
cin >> dstotal;
while (dstotal < 30 || dstotal >100)
{

cout << "Invalid re-enter ";

mailto:athar@northern.edu.pk

Northern University, Nowshera

Programming Fundamentals (ECS-121)

Muhammad Athar

email id: athar@northern.edu.pk,

Whatsapp# 0333-5077664

cin >> dstotal;
}
cout << "Entre pf obtain ";
cin >> pfobtain;

while (pfobtain<@ || pfobtain>pftotal)

{
cout << "Invalid re-enter ";
cin >> pfobtain;

¥

cout << "Entre ds obtain ";

cin >> dsobtain;

while (dsobtain<@ || dsobtain>dstotal)

{

cout << "Invalid re-enter ";
cin >> dsobtain;

}

Now analyze logic of total marks

PFE Total

DS Total

cin >> pftotal;
while (pftotal < 3@ || pftotal >100)

{

cout << "Invalid re-enter ";
cin >> pftotal;

}

cin >> dstotal;
while (dstotal < 30 || dstotal >100)

cout << "Invalid re-enter
cin >> dstotal;

}

)

Logic of both function is same why not implement this logic in a function and then return a value

and assign to relevant variable as given below.

int gettotalmarks()

{
int total;
cin >> total;
while (total < 30 || total >100)
{
cout << "Invalid re-enter ";
cin >> total;
}
return total;
}
pftotal= gettotalmarks();
dstotal= gettotalmarks();

If you look at above call you can see code is reduced and in case of same logic we can write

function.

mailto:athar@northern.edu.pk

Northern University, Nowshera

Muhammad Athar

Programming Fundamentals (ECS-121)

email id: athar@northern.edu.pk,

Whatsapp# 0333-5077664

Let us look at code obtain marks logic.

PE Total

DS Total

cin >> pfobtain;
while (pfobtain<@ || pfobtain>pftotal)
{
cout << "Invalid re-enter
cin >> pfobtain;

}

)

cin >> dsobtain;
while (dsobtain<®@ || dsobtain>dstotal)

cout << "Invalid re-enter
cin >> dsobtain;

}

)

Difference lies in validation with relevant total variable why not pass this variable to a function get

validated and assign its value to relevant variable as given below.

int getobtainmarks(int total)

{
int obtain;
cin >> obtain;
while (obtain<® || obtain>total)
{
cout << "Invalid re-enter ";
cin >> obtain;
}
}

pfobtain= getobtainmarks(pftotal);
dsobtain= getobtainmarks(dstotal);

Solution with function:

#include "iostream"
using namespace std;
int gettotalmarks()

{
int total;
cin >> total;
while (total < 30 || total >100)
{
cout << "Invalid re-enter ";
cin >> total;
}
return total;
}

int getobtainmarks(int total)

mailto:athar@northern.edu.pk

Muhammad Athar

}

Northern University, Nowshera

Programming Fundamentals (ECS-121)

email id: athar@northern.edu.pk,

int obtain;
cin >> obtain;
while (obtain<® || obtain>total)

{

cout << "Invalid re-enter ";
cin >> obtain;

void main()

{

int pftotal, dstotal;

int pfobtain, dsobtain;

cout << "Enter pf total ";

pftotal = gettotalmarks();

cout << "Enter ds total ";

dstotal = gettotalmarks();

cout << "Enter pf obtain ";
pfobtain = getobtainmarks(pftotal);
cout << "Enter ds obtain ";
dsobtain = getobtainmarks(dstotal);

Whatsapp# 0333-5077664

mailto:athar@northern.edu.pk

Northern University, Nowshera

Programming Fundamentals (ECS-121)

Muhammad Athar email id: athar@northern.edu.pk, Whatsapp# 0333-5077664

mailto:athar@northern.edu.pk

