
Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664

Lectures-3-4 Page 1 of 9

(Week 02) Lectures 03 & 04

Objectives: Learning objectives of these lectures are

 Simple Algorithm Examples

o Finding GCD

o Adding numbers from 1 to N

 With loop in N steps

 With formula in 1 step

o Finding sum of squares of N numbers

 With loop in N steps

 With formula in 1 step

o Finding the Largest Value among N Values

 Pseudo Code & its Rules

Text Book & Resources:

1. Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest

and Clifford Stein, The MIT Press; 3rdEdition (2009). ISBN-10: 0262033844

2. Introduction to the Design and Analysis of Algorithms by Anany Levitin, Addison Wesley;

2ndEdition (2006). ISBN-10: 0321358287

3. Algorithms in C++ by Robert Sedgewick (1999). ASIN: B006UR4BJS

4. Algorithms in Java by Robert Sedgewick, Addison-Wesley Professional; 3rd Edition(2002).

ISBN-10: 0201361205

mailto:athar@northern.edu.pk

Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664

Lectures-3-4 Page 2 of 9

Analysis of Algorithm

In the last week, I gave you a brief introduction about the algorithm & its characteristics. Why to

need the algorithm and its basic areas which are design & analysis of algorithm. In this week, we

will discuss the analysis of algorithm with some simple algorithm examples. What are pseudo

code and its rules, advantage and disadvantages? At the end, we will also discuss the efficiency

classes and their notations.

Simple Algorithms Examples

Finding Greatest Common Divisor (GCD)

Algorithm 1: (Euclid’s Algorithm)

 Input: Two Numbers m, n

 Output: largest number that divides both m and n with remainder 0

Procedure (set of instruction):

Step 1 If n = 0, return the value of m as the answer and stop; otherwise, proceed to Step

2.

Step 2 Divide m by n and assign the value of the remainder to r.

Step 3 Assign the value of n to m and the value of r to n. Go to Step 1.

Example:

GCD(80, 24) will be computed as,

GCD(80, 24) = GCD(24, 8) = GCD(8, 0) = 8

GCD(96, 10) will be computed as,

GCD(96, 10) = GCD(10, 6) = GCD(6, 4) = GCD(4, 2) = GCD(2, 0) = 2

Algorithm 2:

Input: Two Numbers n, m

Output: largest number that divides both m and n with remainder 0

Procedure (set of instruction):

Step 1 m%n=0 then return n otherwise goto step 2

Step 2 assign a value of n to d

Step 3 made decrement to d

Step 4 divide m and n by d; if remainder of both is zero return d otherwise goto step 3

Example:

mailto:athar@northern.edu.pk

Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664

Lectures-3-4 Page 3 of 9

GCD(80, 24) will be computed as,

 80 will be divided by 24, remainder will be not zero so 24 will be assigned to d and made

decrement d, that will become 23.

 Now 80 and 24 will be divided by 23, again remainder will not zero. Now d will become

22.

 This will continue until d becomes 8 and at this step remainder will be zero hence 8 will

be gcd.

Let us made the analysis of both algorithms for GCD, second algorithm will require more

operations as compared to first one.

Adding numbers from 1 to N

Algorithm 1:

 Input: n

 Output: Sum of n numbers

Procedure (set of instruction):

Step 1 Assign zero to sum and 1 to i

Step 2 add i to sum

Step 3 made increment to i

Step 4 repeat steps 2 and 3 n times

No remind mathematical formula as given below

Example:

Let n=50

Then

On the base of this formula we can write algorithm as follow

Algorithm 2:

 Input: n

 Output: Sum

Procedure (set of instruction):

Step 1 sum=n*(n+1)/2

Algorithm 1 will demand n operations to compute sum while algorithm 2 will do this all in one

step.

Adding sum of squares of first N numbers

Algorithm 1:

2

)1(
21

1






nn
ni

n

i



50(50 1)
1275

2




mailto:athar@northern.edu.pk

Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664

Lectures-3-4 Page 4 of 9

 Input: n

 Output: Sum

Procedure (set of instruction):

Step 1 Assign zero to sum and 1 to i

Step 2 add i*i to sum

Step 3 made increment to i

Step 4 repeat steps 2 and 3 n times

No remind mathematical formula as given below

Example:

Let n =10

On the base of this formula we can write algorithm as follow

Algorithm 2:

 Input: n

 Output: Sum

Procedure (set of instruction):

Step 1 sum=(n*(n+1)*(2*n+1))/6

Algorithm 1 will demand n operations to compute sum of squares of numbers while algorithm 2

will do this all in one step.

Find the value of the largest element in a list of n numbers.

MaxElement(A[0..n-1)

 maxVal = A[0];

 for(I = 1; I < n; I++)

 if(A[I] > maxVal)

 maxVal = A[I];

 return maxVal

What is Pseudo Code?

Pseudo code is an artificial and informal language that helps programmers to develop algorithms.

Pseudo code is a "text-based" detail (algorithmic) design tool. The rules of Pseudo code are







n

i

nnn
ni

1

2222

6

)12)(1(
21 

10(10 1)(2(10) 1)
385

6

 


mailto:athar@northern.edu.pk

Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664

Lectures-3-4 Page 5 of 9

reasonably straightforward. All statements showing "dependency" are to be indented. These

include while, do, for, if, switch. Examples below will illustrate this notion.

Finding Greatest Common Divisor (GCD)

Pseudo Code: (Euclid’s Algorithm)

Input: Two nonnegative, not-both-zero integers m and n

Output: Greatest common divisor of m and n

Procedure:

while n ≠ 0 do

r  m mod n

m  n

n  r

return m

Rules for Pseudo Code

There are some rules that should be followed to write a code

 1. Write only one statement per line

Each statement in your pseudo code should express just one action for the computer. If

the task list is properly drawn, then in most cases each task will correspond to one line of pseudo

code.

EXAMPLE: TASK LIST:

Read name, hourly rate, hours worked, deduction rate

Perform calculations

grossPay = hourlyRate * hoursWorked

deduction = grossPay * deductionRate

netpay = grossPay – deduction

Write name, grossPay, deduction, netpay

PSEUDO CODE:

READ name, hourlyRate, hoursWorked, deductionRate

grossPay = hourlyRate * hoursWorked

deduction = grossPay * deductionRate

netPay = grossPay – deduction

WRITE name, grossPay, deduction, netPay

2. Capitalize initial keyword

In the example above, READ and WRITE are in caps. There are just a few keywords we will

use:

READ, WRITE, IF, ELSE, ENDIF, WHILE, ENDWHILE, REPEAT, UNTIL

mailto:athar@northern.edu.pk

Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664

Lectures-3-4 Page 6 of 9

3. Indent to show hierarchy

We will use a particular indentation pattern in each of the design structures:

SEQUENCE: keep statements that are “stacked” in sequence all starting in the same column.

SELECTION: indent the statements that fall inside the selection structure, but not the keywords

that form the selection

IF amount < 1000

interestRate = 0.06 // the “yes” or “true” action

ELSE

interestRate = 0.10 // the “no” or “false” action

ENDIF

EXAMPLE: In the example above, employees whose grossPay is less than 100 do not have any

deduction.

TASK LIST:

Read name, hourly rate, hours worked, deduction rate

Compute gross, deduction, net pay

Is gross >= 100?

YES: calculate deduction

NO: no deduction

Write name, gross, deduction, net pay

PSEUDO CODE:

READ name, hourlyRate, hoursWorked

grossPay = hourlyRate * hoursWorked

IF grossPay >= 100

deduction = grossPay * deductionRate

ELSE

deduction = 0

END IF

netPay = grossPay – deduction

WRITE name, grossPay, deduction, netPay

Nesting IF

READ gameNumber

IF gameNumber = 1

DO ABC

ELSE

IF gameNumber = 2

DO CDE

ELSE

DO DEF

END IF

mailto:athar@northern.edu.pk

Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664

Lectures-3-4 Page 7 of 9

END IF

LOOPING: indent the statements that fall inside the loop, but not the keywords that form the

loop

count = 0

WHILE count < 10

ADD 1 to count

WRITE count

END WHILE

WRITE “The end”

4. End multiline structures

See how the IF/ELSE/ENDIF is constructed above. The ENDIF (or END whatever) always is in

line with the IF (or whatever starts the structure).

5. Keep statement language independent

Resist the urge to write in whatever language you are most comfortable with. In the long run,

you will save time! There may be special features available in the language you plan to

eventually write the program in; if you are SURE it will be written in that language, then you can

use the features. If not, then avoid using the special features.

Pseudo Code Disadvantages

 It’s not visual

 There is no accepted standard, so it varies widely from company to company

Pseudo Code Advantages

 Can be done easily on a word processor

 Easily modified

 Implements structured concepts well

Efficiency Classes for Algorithms

Each algorithm has different efficiency in term of time and space. There are infinite problems in

the word and almost each of them has an algorithm to be solved. It is impossible to memorizing

the efficiency (execution time) of each algorithm. Existing algorithms have some trend/behavior

in the context of efficiency. On the base of those trends; there are standard classes of algorithm’s

efficiency are defined. In the future we will compute the execution time for any algorithm and

decide the efficiency class among the given classes on the base of trend for the specific

algorithm. Defined efficiency classes are given below.

mailto:athar@northern.edu.pk

Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664

Lectures-3-4 Page 8 of 9

 Constant  1

 Logarithmic  log n

 Linear  n

 Log Linear  n log n

 Quadratic  n2

 Cubic  n3

 Exponential  2n

In the above classes; n is actually is data size that will be given to a particular algorithm.

Example:

Adding numbers from 1 to N

Algorithm 1:

 Input: n

 Output: Sum

Procedure (set of instruction):

Step 1 Assign zero to sum and 1 to i

Step 2 add i to sum

Step 3 made increment to i

Step 4 repeat steps 2 and 3 n times

No remind mathematical formula as given below

On the base of this formula we can write algorithm as follow

Algorithm 2:

 Input: n

 Output: Sum

Procedure (set of instruction):

Step 1 sum=n*(n+1)/2

Algorithm 1 will demand n operations to compute sum while algorithm 2 will do this all in one

step.

2

)1(
21

1






nn
ni

n

i



mailto:athar@northern.edu.pk

Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664

Lectures-3-4 Page 9 of 9

Here, execution time for algorithm 1 will be increase with increasing n while execution time for

algorithm 2 will remain constant whatever the size of the data will be. In this algorithm the

efficiency class for algorithm 1 will be linear and for algorithm 2 will be constant. Following

table and graph show the difference between the efficiency classes.

 n=1 n=2 n=4 n=8 n=16 n=32

1 1 1 1 1 1 1

logn 0 1 2 3 4 5

n 1 2 4 8 16 32

nlogn 0 2 8 24 64 160

n2 1 4 16 64 256 1024

n3 1 8 64 512 4096 32768

2n 2 4 16 256 65536 4294967296

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12

x

log x

x log x

x*x

x*x*x

2^x

mailto:athar@northern.edu.pk

