Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664

(Week 03) Lectures 05 & 06

Objectives: Learning objectives of these lectures are

e How to Compute Running Time of the Algorithms?
e What are the Basic Operations?
e How to Compute Basic Operations in an algorithm?

e Rules to compute the operations for different statements

Text Book & Resources:

1. Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
and Clifford Stein, The MIT Press; 3rdEdition (2009). ISBN-10: 0262033844

2. Introduction to the Design and Analysis of Algorithms by Anany Levitin, Addison Wesley;

2ndEdition (2006). ISBN-10: 0321358287

Algorithms in C++ by Robert Sedgewick (1999). ASIN: BOO6UR4BJS

4. Algorithms in Java by Robert Sedgewick, Addison-Wesley Professional; 3 Edition(2002).
ISBN-10: 0201361205

w

Lectures-5-6 Page 1 of 6

mailto:athar@northern.edu.pk

Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664

How to Compute Running Time for Algorithm?

By inspecting the pseudo code, we can determine the maximum number of primitive operations

executed by an algorithm, as a function of the input size.

Example 1:

Algorithm arrayMax (A, n)
operations

currentMax «— A[0Q] 1
for (i =1; i<n; i++) 2n
(i=1 once, i<n ntimes, i++ (n-1) times)
if A[i] > currentMax then 2(n—-1)
currentMax < A[i] 2(n—1)
return currentMax 1
Total 6n-2

Example 2 (Initializing array with zero):

Algorithm 1 Algorithm 2
Cost Cost
arr[0] < 0; C1 for(i<=0; i<N; i++) C2
arr[1] « 0; C1 arr[i] « 0; C1
arr[2] « 0; C1

arr[N-1] «-0; ¢

=C1+C1+...+C1 =(N+1)xc2+Nxcy
=c1 XN =(c2+Cci))XxN+c
Example 3:
Algorithm Cost
sum = 0; C1
for(i=0; i<N; i++) C2
for(j=0; j<N; j++) C2
sum +=arr[i][j]; C3

1+ C2 X (N+1) + c2 X N x (N+1) + c3 x N?

Basic Operations in Algorithms

Lectures-5-6

Page 2 of 6

mailto:athar@northern.edu.pk

Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664
An algorithm to solve a particular task employs some set of basic operations. When we estimate

the amount of work done by an algorithm we usually do not consider all the steps such as e.g.
initializing certain variables. Generally, the total number of steps is roughly proportional to the
number of the basic operations. Thus, we are concerned mainly with the basic operations - how
many times the basic operations have to be performed depending on the size of input.

Typical basic operations for some problems are the following:

Problem Operation
Find x in an array Comparison of x with an entry in the array
Multiplying two matrices with real Multiplication of two real numbers
entries
Sort an array of numbers Comparison of two array entries plus
moving elements in the array
Traverse a tree Traverse an edge

The work done by an algorithm, i.e. its complexity, is determined by the number of the
basic operations necessary to solve the problem.

Some algorithms are not dependent on the size of the input - the number of the operations they
perform is fixed. Other algorithms depend on the size of the input, and these are the algorithms
that might cause problems. Before implementing such an algorithm, we have to be sure that the
algorithm will finish the job in reasonable time.

What is size of input? We need to choose some reasonable measure of size. Here are some
examples:

Problem Size of input
Find x in an array The number of the elements in the array
Multiply two matrices The dimensions of the matrices
Sort an array The number of elements in the array
Traverse a binary tree The number of nodes
Solve a system of linear equations The number of equations, or the number of
the unknowns, or both

Counting the number of operations
The core of the algorithm analysis: to find out how the number of the basic operations depends
on the size of the input.
Rules to compute the operations for different statements
Sequential Statements: Just add the running time of the statements
Example: Algorithm 1
Cost

Lectures-5-6 Page 3 of 6

mailto:athar@northern.edu.pk

Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664
arr[0] « 0; C1
arr[1] « 0; C1
arr[2] « 0; C1

arr[N-1] <~ 0; ¢

CitCi+..+C1=C1 X N
Iterative Statements
Iteration is at most the running time of the statements inside the loop (including tests) times the
number of iterations.
Examples
The running time of for loop is at most the running time of the statements inside the loop
times the number of iterations.
for(i=0;i<n;it+)
sum = sum + i;
for(i=0;i<n;i++) /li=0; executed only once: 1
/li<n; n+1times n+1
I/ i++ n times n
// total time of the loop heading:
/[1+ n+1+ n = 2n+2
sum =sum + i; /I 2 operations , 2n
Total = 2n+2n+2=4n+2
Sometimes a loop may cause the if-else rule not to be applicable. Consider the following loop:

while (n > 0)
if(n%2==0)
print n
n=n/2
else
print n
print n
n=n-1
The else-branch has more basic operations; therefore one may conclude that the loop is n times.
However the if-branch dominates. For example if n is 60, then the sequence of n is: 60, 30, 15,
14,7,6, 3, 2, 1, and 0. Hence the loop is logarithmic.
Nested Loops

Lectures-5-6 Page 4 of 6

mailto:athar@northern.edu.pk

Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664
Analyze these inside out. The total running time of a statement inside a group of nested loops is

the running time of the statement multiplied by the product of the size of all the loops. The total
running time is the running time of the inside statements times the product of the sizes of all the
loops.

Selection Statements
If then else
e if (condition) Syelse Sz
Running time of the test plus the larger of the running times of Sy and Sa.
Example 1: (Search in unordered array)

for (i=0;1<n;i++)

if (@[i] ==x)
return 1; // 1 means succeed
else if(i= =n-1)

return -1; // -1 means failure, the element is not found

The basic operation in this problem is comparison, so we are interested in how the number of
comparisons depends on n.

Here we have a loop that runs at most n times:

If the element is not there, the algorithm needs n comparisons. If the element is at the end, we
need n comparisons. If the element is somewhere in between, we need less than n comparisons.
In the worst case (element not there, or located at the end), we have n comparisons to make.
Hence the number of operations is N.

Else portion will be execute only once in case when number not found.

Here we will select if portion having larger running time.

Example 2:

Lectures-5-6 Page 5 of 6

mailto:athar@northern.edu.pk

Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664

If Statement: Take the complexity of the most expensive case :

char key;
int[][] A = new int[5] [5]:
int[][] B = new int[5] [5]:

int[][] C new int[5][5];
if(key == '+') {
for(int i = 0; i < n; i++)
for(int j = 0; j < n; J++)

C[i]l[3j]1 = A[i]1[3]1 + B[ilI[3]-
} // End of if block

N ...

else if(key == 'x') complexity

C = matrixMult(A, B);

n3
—_— L

System.out.println("Error! Enter '+' or 'x'!");

Switch Statement

Switch: Take the complexity of the most expensive case

char key;
int[] X = new int[5];
int[][] ¥ = new int[10][10];

switch (key) {

for(int j = 0; j < Y[0].length;
sum += Y[i] [j];

j++)

} // End of switch block

Overall Complexity: n?

Function Calls:
Analyzing from inside to out. If there are function calls, these must be analyzed first.

Lectures-5-6 Page 6 of 6

mailto:athar@northern.edu.pk

