
Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664

Lectures-5-6 Page 1 of 6

(Week 03) Lectures 05 & 06

Objectives: Learning objectives of these lectures are

 How to Compute Running Time of the Algorithms?

 What are the Basic Operations?

 How to Compute Basic Operations in an algorithm?

 Rules to compute the operations for different statements

Text Book & Resources:

1. Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest

and Clifford Stein, The MIT Press; 3rdEdition (2009). ISBN-10: 0262033844

2. Introduction to the Design and Analysis of Algorithms by Anany Levitin, Addison Wesley;

2ndEdition (2006). ISBN-10: 0321358287

3. Algorithms in C++ by Robert Sedgewick (1999). ASIN: B006UR4BJS

4. Algorithms in Java by Robert Sedgewick, Addison-Wesley Professional; 3rd Edition(2002).

ISBN-10: 0201361205

mailto:athar@northern.edu.pk

Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664

Lectures-5-6 Page 2 of 6

How to Compute Running Time for Algorithm?

By inspecting the pseudo code, we can determine the maximum number of primitive operations

executed by an algorithm, as a function of the input size.

Example 1:

Algorithm arrayMax(A, n)

 # operations

 currentMax  A[0] 1

 for (i =1; i<n; i++) 2n

 (i=1 once, i<n n times, i++ (n-1) times)

 if A[i]  currentMax then 2(n  1)

 currentMax  A[i] 2(n  1)

 return currentMax 1

 Total 6n 2

Example 2 (Initializing array with zero):

Algorithm 1 Algorithm 2

 Cost Cost

 arr[0]  0; c1 for(i0; i<N; i++) c2

 arr[1]  0; c1 arr[i]  0; c1

 arr[2]  0; c1

 arr[N-1]  0; c1

 ----------------------------------- --

=c1+c1+...+c1 = (N+1) x c2 + N x c1

 = c1 x N = (c2 + c1) x N + c2

Example 3:

Algorithm Cost
 sum = 0; c1

 for(i=0; i<N; i++) c2

 for(j=0; j<N; j++) c2

 sum += arr[i][j]; c3

c1 + c2 x (N+1) + c2 x N x (N+1) + c3 x N2

Basic Operations in Algorithms

mailto:athar@northern.edu.pk

Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664

Lectures-5-6 Page 3 of 6

An algorithm to solve a particular task employs some set of basic operations. When we estimate

the amount of work done by an algorithm we usually do not consider all the steps such as e.g.

initializing certain variables. Generally, the total number of steps is roughly proportional to the

number of the basic operations. Thus, we are concerned mainly with the basic operations - how

many times the basic operations have to be performed depending on the size of input.

Typical basic operations for some problems are the following:

Problem Operation

Find x in an array Comparison of x with an entry in the array

Multiplying two matrices with real

entries

Multiplication of two real numbers

Sort an array of numbers Comparison of two array entries plus

moving elements in the array

Traverse a tree Traverse an edge

The work done by an algorithm, i.e. its complexity, is determined by the number of the

basic operations necessary to solve the problem.

Some algorithms are not dependent on the size of the input - the number of the operations they

perform is fixed. Other algorithms depend on the size of the input, and these are the algorithms

that might cause problems. Before implementing such an algorithm, we have to be sure that the

algorithm will finish the job in reasonable time.

What is size of input? We need to choose some reasonable measure of size. Here are some

examples:

Problem Size of input

Find x in an array The number of the elements in the array

Multiply two matrices The dimensions of the matrices

Sort an array The number of elements in the array

Traverse a binary tree The number of nodes

Solve a system of linear equations The number of equations, or the number of

the unknowns, or both

Counting the number of operations

The core of the algorithm analysis: to find out how the number of the basic operations depends

on the size of the input.

Rules to compute the operations for different statements

Sequential Statements: Just add the running time of the statements

Example: Algorithm 1

 Cost

mailto:athar@northern.edu.pk

Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664

Lectures-5-6 Page 4 of 6

 arr[0]  0; c1

 arr[1]  0; c1

 arr[2]  0; c1

 arr[N-1]  0; c1

c1+c1+...+c1 = c1 x N

Iterative Statements

Iteration is at most the running time of the statements inside the loop (including tests) times the

number of iterations.

Examples

 The running time of for loop is at most the running time of the statements inside the loop

times the number of iterations.

for(i = 0; i < n; i++)

sum = sum + i;

for(i = 0; i < n; i++) // i = 0; executed only once: 1

 // i < n; n + 1 times n+1

 // i++ n times n

 // total time of the loop heading:

 // 1+ n+1+ n = 2n+2

sum = sum + i; // 2 operations , 2n

Total = 2n+2n+2=4n+2

Sometimes a loop may cause the if-else rule not to be applicable. Consider the following loop:

while (n > 0)

 if (n % 2 = = 0)

 print n

 n = n / 2

 else

 print n

 print n

 n = n – 1

The else-branch has more basic operations; therefore one may conclude that the loop is n times.

However the if-branch dominates. For example if n is 60, then the sequence of n is: 60, 30, 15,

14, 7, 6, 3, 2, 1, and 0. Hence the loop is logarithmic.

Nested Loops

mailto:athar@northern.edu.pk

Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664

Lectures-5-6 Page 5 of 6

Analyze these inside out. The total running time of a statement inside a group of nested loops is

the running time of the statement multiplied by the product of the size of all the loops. The total

running time is the running time of the inside statements times the product of the sizes of all the

loops.

Selection Statements

 If then else

 if (condition) S1 else S2

Running time of the test plus the larger of the running times of S1 and S2.

Example 1: (Search in unordered array)

 for (i = 0; i < n; i++)

if (a[i] = = x)

 return 1; // 1 means succeed

 else if(i= =n-1)

return -1; // -1 means failure, the element is not found

The basic operation in this problem is comparison, so we are interested in how the number of

comparisons depends on n.

Here we have a loop that runs at most n times:

If the element is not there, the algorithm needs n comparisons. If the element is at the end, we

need n comparisons. If the element is somewhere in between, we need less than n comparisons.

In the worst case (element not there, or located at the end), we have n comparisons to make.

Hence the number of operations is N.

Else portion will be execute only once in case when number not found.

Here we will select if portion having larger running time.

Example 2:

mailto:athar@northern.edu.pk

Analysis of Algorithm

Muhammad Athar email id: athar@northern.edu.pk WhatsApp# 0333-5077664

Lectures-5-6 Page 6 of 6

Switch Statement

Function Calls:

Analyzing from inside to out. If there are function calls, these must be analyzed first.

mailto:athar@northern.edu.pk

