
Week-5 -1- Data Structures

Lesson 9-10

Objectives

 Double Link List

 Operations on Double Link List

 Insertion

o Start

o End

o After

o Before

 Deletion

o Start

o End

o Specific node

 Search Given Item

 Locate Item at Given Position

 Link List Having Integer as Data Item

Introduction

Doubly linked list is a complex type of linked list in which a node contains a pointer

to the previous as well as the next node in the sequence. Therefore, in a doubly linked

list, a node consists of three parts: node data, pointer to the next node in sequence

(next pointer) , pointer to the previous node (previous pointer). A sample node in a

doubly linked list is shown in the figure.

We now know that a node in a doubly linked list must contain three variables:

 A variable containing the actual data.

 A variable storing the pointer to the next node.

 A variable storing the pointer to the previous node.

Week-5 -2- Data Structures

With this information in hand, we can now create the class.

A doubly linked list containing three nodes having numbers from 1 to 3 in their data part, is

shown in the following image.

Each element (we will call it a node) of a list is comprising of three items - the data and two

reference to the next and previous node. The last node has a reference to null. The entry point

into a linked list is called the head of the list. It should be noted that head is not a separate

node, but the reference to the first node. If the list is empty then the head is a null reference.

A double linked list is a dynamic data structure. The number of nodes in a list is not fixed and

can grow and shrink on demand. Any application which has to deal with an unknown number

of objects will need to use a linked list.

One disadvantage of a linked list against an array is that it does not allow direct access to the

individual elements. If you want to access a particular item then you have to start at the head

and follow the references until you get to that item.

So we are ready for creating linked list.

Doubly Linked list

structure

Like a singly linked list, a doubly-linked list is a linked data structure that consists of

a set of sequentially linked records called nodes. Unlike a singly linked list, each node

of the doubly singly list contains two fields that are references to the previous and to

the next node in the sequence of nodes. The beginning and ending nodes’ previous

and next links, respectively, point to some kind of terminator, typically a sentinel

node or null, to facilitate traversal of the list.

Doubly linked lists are like singly linked lists, except each node has two pointers --

one to the next node, and one to the previous node. This makes life nice in many

ways:

 You can traverse lists forward and backward.

Week-5 -3- Data Structures

 You can insert anywhere in a list easily. This includes inserting before a node,

after a node, at the front of the list, and at the end of the list.

 You can delete nodes very easily.

1) Insert from Start
At first initialize node type.

AnyType head = null; //empty linked list

Then we take the data input from the user and store in the AnyType info variable.

Create a temporary node AnyType temp and allocate space for it.

Double_Link_List p;
p=new Double_Link_List();

Then place info to temp.data. So the first field of the node temp is filled. Now

temp.next and temp.prev must become a part of the remaining linked list

(although now linked list is empty but imagine that we have a 2 node linked list and

head is pointed at the front) So temp.next must copy the address of the head

(Because we want to insert at start) and temp.prev must have head address we

also want that head will always point at front. So head must copy the address of the

node temp.

Figure: Insert at Start

Temp.data = info; // store data(first field)

Temp.next=null; // store the address of the pointer head(second field)
Temp.prev=head;

head = temp; // transfer the address of 'temp' to 'head'

2) Traverse(Display Function)
Now we want to see the information stored inside the linked list. We create node

temp1. Transfer the address of head to temp1. So temp1 is also pointed at the front of

the linked list. Linked list has 3 nodes.

We can get the data from first node using temp1.data. To get data from second node,

we shift temp1 to the second node. Now we can get the data from second node.

Temp=Head;

while(temp1!=null)
{

System.out.println(temp1.data);// show the data in the linked list
 temp1 = temp1.next; // transfer the address of 'temp.next' to 'temp'
}

Week-5 -4- Data Structures

Figure: Traverse

This process will run until the linked list’s next is null.

3) Insert from End
Insert data from End is very similar to the insert from start in the linked list. Here the

extra job is to find the last node of the linked list.

Double_Link_lsit p; // create a temporary node

p=new Double_Link_List (); // allocate space for node
if (Head==null)

 Head=p; // transfer the address of 'head' to
else

 {

 temp1 = head;

 while(temp1.next!=null) // go to the last node
 temp1 = temp1.next;//tranfer the address of 'temp1.next' to 'temp1'

 }

Temp1.next=p;

p.prev=Temp1;

Now, Create a temporary node node temp and allocate space for it. Then place info

to temp.data, so the first field of the node node temp is filled. node temp will be the

last node of the linked list. For this reason, temp.next will be null. To create a

connection between linked list and the new node, the last node of the existing linked

list node temp1`s second field temp1.next is pointed to node temp and p

node.prev must points to Temp1.

Figure: Insert at End

node temp; // create a temporary node

temp = new node; // allocate space for node

temp.data = info; // store data(first field)

temp.next = null; // second field will be null(last node)

temp1.next = temp; // 'temp' node will be the last node

Week-5 -5- Data Structures

temp.prev = temp1; // 'temp' node will be the last node

4) Insert after specified number of nodes
Insert data in the linked list after specified number of node is a little bit complicated.

But the idea is simple. Suppose, we want to add a node after 2nd position. So, the new

node must be in 3rd position. The first step is to go the specified number of node. Let,

node temp1 is pointed to the 2nd node now.

System.out.println("ENTER THE NODE NUMBER:");

node_number=scan.NextInt(); // take the node number from user

node temp1; // create a temporary node
temp1=new node(); // allocate space for node

temp1 = head;

for(int i = 1 ; i < node_number ; i++)
{

 temp1 = temp1.next; // go to the next node

if(temp1 == null)
 {

 System.out.println(node_number+" node is not exist");

break;
 }

}

Now, Create a temporary node node temp and allocate space for it. Then place info

to temp.data , so the first field of the node node temp is filled.

node temp; // create a temporary node

temp = new node(); // allocate space for node

temp.data = info; // store data(first field)

To establish the connection between new node and the existing linked list, new node’s

next must pointed to the 2nd node’s (temp1) next. The 2nd node’s (temp1) next

must pointed to the new node(temp).

temp.next = temp1.next; //transfer the address of temp1.next to temp1next.prev=temp;

temp1.next = temp; //transfer the address of temp to temp1.next

temp.prev=temp1;

Week-5 -6- Data Structures

Figure: Insert after specified number of nodes

Deletion
Find a node containing "key" and delete it. In the picture below we delete a node

containing "A"

The algorithm is similar to insert "before" algorithm. It is convenient to use two

references prev and cur. When we move along the list we shift these two references,

keeping prev one step before cur. We continue until cur reaches the node which we

need to delete. There are three exceptional cases, we need to take care of:

1. list is empty

2. delete the head node

3. node is not in the list

5) Delete from Start
Delete a node from linked list is relatively easy. First, we create node temp. Transfer

the address of head to temp. So temp is pointed at the front of the linked list. We want

to delete the first node. So transfer the address of temp.next to head so that it now

pointed to the second node. Now free the space allocated for first node. We can also

use Delete keyword for deletion in Linked List.

node temp; // create a temporary node

temp = new node(); // allocate space for node

temp = head; // transfer the address of 'head' to 'temp'

head = temp.next; // transfer the address of 'temp.next' to 'head'

Figure: Delete from start

Week-5 -7- Data Structures

6) Delete from End
The last node`s next of the linked list always pointed to null. So when we will delete

the last node, the previous node of last node is now pointed at NULL. So, we will

track last node and previous node of the last node in the linked list. Create temporary

node temp1 and old_temp.

// create a temporary node
node temp1;

temp1 = new node(); // allocate space for node
temp1 = head; //transfer the address of head to temp1

node old_temp; // create a temporary node

old_temp = new node(); // allocate space for node

while(temp1.next!=null) // go to the last node
{

 Old.temp = temp1; // transfer the address of 'temp1' to 'old_temp'
 temp1 = temp1.next; //transfer the address of 'temp1.next' to 'temp1'

}

Now node temp1 is now pointed at the last node and old_temp is pointed at the

previous node of the last node. Now rest of the work is very simple. Previous node of

the last node old_temp will be NULL so it become the last node of the linked list.

Free the space allocated for last lode.

old_temp.next = null; // previous node of the last node is null

Figure: Delete at Start last

7) Delete specified number of node
To delete a specified node in the linked list, we also require to search the specified

node and previous node of the specified node. Create temporary node temp1,

old_temp and allocate space for it. Take the input from user to know the number of

the node.

node temp1; // create a temporary node

temp1 = new node(); // allocate space for node

temp1 = head; // transfer the address of 'head' to 'temp1'

node old_temp; // create a temporary node
old_temp = new node(); // allocate space for node

old_temp = temp1; // transfer the address of 'temp1' to 'old_temp'

Syste.out.println("ENTER THE NODE NUMBER:");

System.out.print(node_number); // take location

Week-5 -8- Data Structures

for(int i = 1 ; i < node_number ; i++)
{

 old_temp = temp1; // store previous node
 temp1 = temp1.next; // store current node

}

Now node temp1 is now pointed at the specified node and old_temp is pointed at the

previous node of the specified node. The previous node of the specified node must connect to

the rest of the linked list so we transfer the address of tmp.prev.next= tmp.next;

tmp.next.prev=tmp.prev. Now free the space allocated for the specified node.

tmp.prev.next= tmp.next;

 tmp.next.prev=tmp.prev.

Conclusion
From the above discussions, I hope that everybody understands what linked list is and

how we can create it.

