Week-5 -1- Data Structures

Lesson 9-10

Objectives

e Double Link List
= QOperations on Double Link List
e Insertion
o Start
o End
o After
o Before
e Deletion
o Start
o End
o Specific node
e Search Given Item
e Locate Item at Given Position
e Link List Having Integer as Data ltem

Introduction

Doubly linked list is a complex type of linked list in which a node contains a pointer
to the previous as well as the next node in the sequence. Therefore, in a doubly linked
list, a node consists of three parts: node data, pointer to the next node in sequence
(next pointer) , pointer to the previous node (previous pointer). A sample node in a
doubly linked list is shown in the figure.

] headﬁ

Prev Data Next

We now know that a node in a doubly linked list must contain three variables:

e A variable containing the actual data.

e A variable storing the pointer to the next node.

e A variable storing the pointer to the previous node.

Week-5 -2- Data Structures

With this information in hand, we can now create the class.

A doubly linked list containing three nodes having numbers from 1 to 3 in their data part, is
shown in the following image.

head |

Each element (we will call it a node) of a list is comprising of three items - the data and two
reference to the next and previous node. The last node has a reference to null. The entry point
into a linked list is called the head of the list. It should be noted that head is not a separate
node, but the reference to the first node. If the list is empty then the head is a null reference.
A double linked list is a dynamic data structure. The number of nodes in a list is not fixed and
can grow and shrink on demand. Any application which has to deal with an unknown number
of objects will need to use a linked list.

One disadvantage of a linked list against an array is that it does not allow direct access to the
individual elements. If you want to access a particular item then you have to start at the head
and follow the references until you get to that item.

So we are ready for creating linked list.

public class Double_Link_List {
private int data;

private Double_Link_List next;

Doubly Linked list

structure

Like a singly linked list, a doubly-linked list is a linked data structure that consists of
a set of sequentially linked records called nodes. Unlike a singly linked list, each node
of the doubly singly list contains two fields that are references to the previous and to
the next node in the sequence of nodes. The beginning and ending nodes’ previous
and next links, respectively, point to some kind of terminator, typically a sentinel
node or null, to facilitate traversal of the list.

Doubly linked lists are like singly linked lists, except each node has two pointers --
one to the next node, and one to the previous node. This makes life nice in many
ways:

e You can traverse lists forward and backward.

X

Week-5

-3- Data Structures

e You can insert anywhere in a list easily. This includes inserting before a node,
after a node, at the front of the list, and at the end of the list.
e You can delete nodes very easily.

1) Insert from Start
At first initialize node type.

AnyType head = null; /lempty linked list
Then we take the data input from the user and store in the anyType info variable.
Create a temporary node anyType temp and allocate space for it.

Double Link_List p;
p=new Double Link List();

Then place info t0 temp.data. So the first field of the node temp is filled. Now
temp.next and temp.prev Must become a part of the remaining linked list
(although now linked list is empty but imagine that we have a 2 node linked list and
head is pointed at the front) So temp.next must copy the address of the nead
(Because we want to insert at start) and temp.prev must have head address We
also want that nhead will always point at front. So head must copy the address of the
node temp.

HEAD N

—————————————— v e - —" w[m[““l:til“’l-rj

I (Irrwnt Nodw
b rJ

x

New Noda

Figure: Insert at Start

Temp.data = info; /I store data(first field)
Temp.next=null; //store the address of the pointer head(second field)
Temp.prev=head;

head = temp; /I transfer the address of ‘temp' to 'head'

2) Traverse(Display Function)

Now we want to see the information stored inside the linked list. We create node
temp1. Transfer the address of head t0 temp1. SO temp1 is also pointed at the front of
the linked list. Linked list has 3 nodes.

We can get the data from first node using temp1.data. To get data from second node,
we shift temp1 to the second node. Now we can get the data from second node.

Temp=Head;

while (templ!=null)

{

System.out.println(templ.data) ;//show the data in the linked list
templ = templ.next; /I transfer the address of 'temp.next' to ‘temp'
}

Week-5 -4- Data Structures

head
H H—‘ E .l—Ea—b P .I—O null
e T A
'j’;/’;_—f
tmp e

Figure: Traverse

This process will run until the linked list’s next is null.

3) Insert from End
Insert data from End is very similar to the insert from start in the linked list. Here the
extra job is to find the last node of the linked list.

Double Link lsit p; // create a temporary node
p=new Double_Link_List (); / allocate space for node
if (Head==null)

Head=p; /I transfer the address of 'head' to
else

{
templ = head;
while (templ.next!=null) //go to the last node
templ = templ.next;//tranfer the address of 'templ.next to ‘templ'

}
Templ .next=p;
p.prev=Templ;

Now, Create a temporary node node temp and allocate space for it. Then place info
to temp.data, so the first field of the node node temp is filled. node temp will be the
last node of the linked list. For this reason, temp.next Will be null. To create a
connection between linked list and the new node, the last node of the existing linked
list node templ\S second field templ.next is pointed 10 node temp and p
node.prev must points to Templ.

Null 2 200 | " 100 4 Null prev 6 next
e
100 200 300
= 2 tm
start p i
Figure: Insert at End
node temp; /[create a temporary node
temp = new node; //allocate space for node
temp.data = info; 1/ store data(first field)
temp.next = null; /I second field will be null(last node)

templ.next = temp; // 'temp' node will be the last node

Week-5

-5- Data Structures

temp.prev = templ; / 'temp' node will be the last node

4) Insert after specified number of nodes

Insert data in the linked list after specified number of node is a little bit complicated.
But the idea is simple. Suppose, we want to add a node after 2nd position. So, the new
node must be in 3rd position. The first step is to go the specified number of node. Let,
node temp1 is pointed to the 2nd node now.

Next ~ \”.’-.'U‘L

NULL e

Pre
System.out.println ("ENTER THE NODE NUMBER:");
node number=scan.NextInt () ; /I take the node number from user
node templ; /[create a temporary node
templ=new node(); // allocate space for node
templ = head;

for(int i =1 ; i < node number ; i++)
{
templ = templ.next; /I go to the next node

if(templ == null)
{
System.out.println (node number+" node is not exist") ;
break;
}
}
Now, Create a temporary node node temp and allocate space for it. Then place info

to temp.data , SO the first field of the node node temp is filled.

node temp; /I create a temporary node
temp = new node () ; // allocate space for node
temp.data = info; I/ store data(first field)

To establish the connection between new node and the existing linked list, new node’s
next must pointed to the 2nd node’s (temp1) next. The 2nd node’s (temp1) next
must pointed to the new node(temp).

temp.next = templ.next; [ltransfer the address of temp1.next to templnext.prev=temp;
templ.next = temp; /ltransfer the address of temp to temp2l.next
temp.prev=templ;

Week-5

-6- Data Structures

- -— - i -— - -
Joshua ' Miciam
- | - \‘ — =d — -
B { < > 1 1
i . i @MW
- Leah - -
Figure: Insert after specified number of nodes
Deletion

Find a node containing "key" and delete it. In the picture below we delete a node
containing "A"

The algorithm is similar to insert "before” algorithm. It is convenient to use two
references prev and cur. When we move along the list we shift these two references,
keeping prev one step before cur. We continue until cur reaches the node which we
need to delete. There are three exceptional cases, we need to take care of:

1. listis empty
2. delete the head node
3. node is not in the list

5) Delete from Start

Delete a node from linked list is relatively easy. First, we create node temp. Transfer
the address of head to temp. SO temp is pointed at the front of the linked list. We want
to delete the first node. So transfer the address of temp.next t0 head S0 that it now
pointed to the second node. Now free the space allocated for first node. We can also
use Delete keyword for deletion in Linked List.

node temp; /I create a temporary node
temp = new node (); //allocate space for node
temp = head; /I transfer the address of 'head' to 'temp’
head = temp.next; /I transfer the address of ‘temp.next' to ‘head'
Deleted node
data data cata
o
—1 2 X 10 — 40 NULL
g o
- -
\Q..-..-...""/
oy o -

Figure: Delete from start

Week-5

-7- Data Structures

6) Delete from End

The last node’s next of the linked list always pointed to null. So when we will delete
the last node, the previous node of last node is now pointed at NULL. So, we will
track last node and previous node of the last node in the linked list. Create temporary
node templ and old temp.

/[create a temporary node
node templ;

templ = new node () ; /[allocate space for node

templ = head; /ltransfer the address of head to templ
node old temp; /[create a temporary node

old temp = new node () ; // allocate space for node

while (templ.next!=null) I/ go to the last node

{
0ld.temp = templ; /[transfer the address of 'temp1' to 'old_temp'
templ = templ.next; /ltransfer the address of 'templ.next to ‘templ’
}
NOW node templ IS Now pointed at the last node and o014 temp is pointed at the
previous node of the last node. Now rest of the work is very simple. Previous node of
the last node 014 temp will be NULL so it become the last node of the linked list.

Free the space allocated for last lode.

old temp.next = null; /I previous node of the last node is null
I e——
old temp fempl
dala — dala data
— | 20 10 40 NULL
| [L - -
‘h

Linked list

Figure: Delete at Start last

7) Delete specified number of node

To delete a specified node in the linked list, we also require to search the specified
node and previous node of the specified node. Create temporary node tempi,

old temp and allocate space for it. Take the input from user to know the number of
the node.

node templ; // create a temporary node
templ = new node (); //allocate space for node

templ = head; /I transfer the address of 'head' to ‘templ'
node old temp; /[create a temporary node

old temp = new node(); // allocate space for node

old temp = templ; /[transfer the address of 'temp1' to 'old_temp'

Syste.out.println ("ENTER THE NODE NUMBER:");
System.out.print (node number) ; // take location

Week-5 -8- Data Structures

for(int i =1 ; i < node number ; i++)

{
old temp = templ; /[store previous node
templ = templ.next; // store current node

}
NOW node templ IS nOw pointed at the specified node and o1d_temp Is pointed at the
previous node of the specified node. The previous node of the specified node must connect to
the rest of the linked list so we transfer the address of tmp.prev.next= tmp.next;
tmp.next.prev=tmp.prev. Now free the space allocated for the specified node.
tmp.prev.next= tmp.next;
tmp.next.prev=tmp.prev.

Removal ofan elemenl of a doubly—linked list

cursor

old temp templ

data

40 NULL

n data

head

I~ node ~, 2™ node 3™ node
b — =

Conclusion
From the above discussions, | hope that everybody understands what linked list is and
how we can create it.

