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Lesson 13-14  

Objectives 

o Stack Introduction 

o Stack 

 The STL Stack Implementation 

 What is LIFO? 

 Use of Stack 

o Stack via Array 

 Stack Representation in Array 

 Stack Implementation via Array 

o Stack via Link List 

 Stack Representation in Link List 

 Stack Implementation via Link List 

o Using stack to implement Recursion 

 Using two stacks to reverse an integer 

 Using one stack to reverse an integer  

o Application of Stack 

 Evaluate a postfix expression using stack 

 Convert infix expression to postfix 

 

Stack: 

A stack is a version of a list that is particularly useful in applications involving reversing 

such as the problem will be given later on. In a stack data structure, all insertions and 

deletions of entries are made at one end, called the top of the stack. 

A helpful analogy is to think of a stack of trays or of plates sitting on the counter in a 

busy cafeteria. Throughout the lunch hour, customers take trays off the top of the stack 

and employees place returned trays back on top of the stack. The tray most recently push 

on the stack is the first one taken off. The bottom tray is the first one put on, and the last 

one to be used. 

When we add an item to a stack, we say that we push it onto the stack, and when 

we 

remove an item, we say that we pop it from the stack. 

Note that the last item pushed onto a stack is always the first that will be popped from 

the stack. This property is called last in, first out, or LIFO for short. 

A stack is particularly useful in applications involving reversing such as the problem at 

the end of this chapter. 

A stack allows access to only one data item: the last item inserted. If you remove 

this item, you can access the next-to-last item inserted, and so on. This capability is 

useful in many programming situations. In this section we’ll see how a stack can be used 

to check whether parentheses, braces, and brackets are balanced in a computer program 
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source file. At the end of this chapter, we’ll see a stack playing a vital role in parsing 

(analyzing) arithmetic expressions such as 3*(4+5). 

A real-world stack allows operations at one end only. For example, we can place or 

remove a card or plate from the top of the stack only. Likewise, Stack ADT allows all 

data operations at one end only. At any given time, we can only access the top element 

of a stack. 

 

The Postal Analogy 

To understand the idea of a stack, consider an analogy provided by the U.S. Postal 

Service. Many people, when they get their mail, toss it onto a stack on the hall table 

or into an “in” basket at work. Then, when they have a spare moment, they process 

the accumulated mail from the top down. First, they open the letter on the top of the 

stack and take appropriate action—paying the bill, throwing it away, or whatever. 

After the first letter has been disposed of, they examine the next letter down, which is 

now the top of the stack, and deal with that. Eventually, they work their Way down to 

the letter on the bottom of the stack (which is now the top). Figure  shows a stack of 

mail. This letter 

 

This “do the top one first” approach works all right as long as you can easily process all 

the mail in a reasonable time. If you can’t, there’s the danger that letters on the bottom 

of the stack won’t be examined for months, and the bills they contain will become 

overdue. Of course, many people don’t rigorously follow this top-to-bottom approach. 

They may, for example, take the mail off the bottom of the stack, so as to process the 

oldest letter first. Or they might shuffle through the mail before they begin processing it 

and put higher-priority letters on top. In these cases, their mail system is no longer a 

stack in the computer-science sense of the word. If they take letters off the bottom, it’s a 

queue; and if  hey prioritize it, it’s a priority queue. We’ll look at these possibilities 

later. Shown in the following figure are the effects of push and pop operations on the 

stack.  
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Figure: Stack operations. 

 

 

The STL Stack Implementation 
/* Program stack.java 

//demonstrates stacks  

// to run this program:*/ 
public static void main(String[] args) { 
 
  Scanner scan=new Scanner(System.in); 
  Stack theStack=new Stack(); 
  int n; 
  System.out.println("Push "+ theStack.maxSize +" Input:   "); 
  for(int i=0;i<theStack.maxSize;i++) 
  { 
  n=scan.nextInt(); 
  theStack.push(n);               // push items onto stack 
  } 
  while( !theStack.isEmpty() )     // until it’s empty, 
  {                             // delete item from stack 
  long value = theStack.pop(); 
  System.out.print(value);      // display it 
  System.out.print("  "); 
  }  // end while 
  System.out.println("  "); 
} 

Output: 

          1         0         30          20         10  

In the program stack.java the empty() member function returns a true if the stack is 

empty. Otherwise it returns a false 

What is LIFO? 



Week-7 -4- Data Structures  

 

This means that the thing we added last is the first thing that gets pulled off. 

Use of Stack: 

1. Stack typically used for temporary storage of data. 

2. Only one way of coming and outgoing. 

3. If we want to get centered value we can't get that. 

 

 

Examples: 

1. Stack of books 

2. Stack of plates 

Plates are pushed onto top and popped off from top. 

Stack Functions: 

 Push: This function is used to add an item to the stack. 

 Empty: This function is used to check whether stack is empty or not; often returns in 

boolean. 

 Pop: This function is used to extract the most recent pushed value of the stack. 

 

 

 

Stack via Array: 

o Stack Representation in Array: 
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 To implement a stack items are inserted and removed at the same end (called the 

top). 

 To use an array to implement stack you need both the array itself and an integer. 

 The integer tells that which location is currently being pointed of the stack. 

 How many elements are in the stack? 

 

 

Stack Implementation via Array: 

import java.util.Scanner; 
 

public class Stack { 
 
private int maxSize;        // size of stack array 
private long[] stackArray; 
private int top;            // top of stack 
 
//-------------------------------------------------------------public 
Stack()         // constructor 
{ 

Scanner scan=new Scanner(System.in); 
int s; 
System.out.println("Enter size of Stack:\t"); 
s=scan.nextInt(); 
maxSize = s;             // set array size 
stackArray = new long[maxSize];  // create array 
top = -1;                // no items yet 

} 
void push(long j)    // put item on top of stack 
 { 
 stackArray[++top] = j;     // increment top, insert item 
 } 
  
 public long pop()           // take item from top of stack 
 { 
 return stackArray[top--];  // access item, decrement top 
 } 
 //-------------------------------------------------------------public 
 long peek()          // peek at top of stack 
 { 
 return stackArray[top]; 
 } 
 //-------------------------------------------------------------public 
 boolean isEmpty()    // true if stack is empty 
 { 
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 return (top == -1); 
 } 
 //-------------------------------------------------------------public 
 boolean isFull()     // true if stack is full 
 { 
 return (top == maxSize-1); 
 } 
 //-------------------------------------------------------------} 
  // end class StackX 

 Stack Representation in Link List: 

 Since all the action happens at the top of a stack, a singly link list is a fine way to 

implement it. 

 The header of the list point to the top of the stack. 

Push: 

 Pushing is inserting an element at the front of the list. 
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 POP.:         Poping is to delete node from the front of list

 

 -With a link list representation overflow will not happen. 

 -Underflow can happen. When a node is popped from list and the node references 

an object the reference (the pointer in node) does not need to be set to null. 

 -Unlike an array implementation it really is removed.We can avoid size limitation 

of stack implemented with an array by using link list to hold the stack elements. 

 -As with array however, we need to decide where to insert elements in the list and 

where to delete them so that push and pop will run the fastest.For a link list insert 

at start or end takes constant time using the head and current pointers respectively. 

 -No memory consumption as compare to array. 

Stack Implementation via Link List: 

import static java.lang.System.exit;  

  class StackUsingLinkedlist {  

   

       private class Node {  
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        int data; 

        Node link;    }  

       Node top;  

        StackUsingLinkedlist()  

    {  

        this.top = null;  

    }  

   

        public void push(int x) // insert at the beginning  

    {  

              Node temp = new Node();  

   

       

  if (temp == null) {  

            System.out.print("\nHeap Overflow");  

            return;  

        }  

   

      temp.data = x;  

   

        temp.link = top;  

      top = temp;  

    }  

    public boolean isEmpty()  

    {  

        return top == null;  

    }  

    public int peek()  

    {  

      if (!isEmpty()) {  

            return top.data;  

        }  

        else {  

            System.out.println("Stack is empty");  

            return -1;  

        }  

    }  

  public void pop() // remove at the beginning  

    {  

        if (top == null) {  

            System.out.print("\nStack Underflow");  

            return;  

        }  

   

       top = (top).link;  

    }  

   

    public void display()  

    {  

       if (top == null) {  

            System.out.printf("\nStack Underflow");  

            exit(1);  

        }  

        else {  

            Node temp = top;  
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            while (temp != null) {  

   

                System.out.printf("%d->", temp.data);  

   

                    temp = temp.link;  

            }  

        }  

    }  

}  

// main class  

public class GFG {  

    public static void main(String[] args)  

    {  

        StackUsingLinkedlist obj = new StackUsingLinkedlist();  

        obj.push(11);  

        obj.push(22);  

        obj.push(33);  

        obj.push(44);  

       obj.display();  

        System.out.printf("\nTop element is %d\n", obj.peek());  

        obj.pop();  

        obj.pop();  

        obj.display();  

        System.out.printf("\nTop element is %d\n", obj.peek());  

    }  

}  

Using a Stack to Implement Recursion 

With the ideas illustrated so far, we can implement any iterative process by specifying a 

register machine that has a register corresponding to each state variable of the process. The 

machine repeatedly executes a controller loop, changing the contents of the registers, until 

some termination condition is satisfied. At each point in the controller sequence, the state of 

the machine (representing the state of the iterative process) is completely determined by the 

contents of the registers (the values of the state variables).  

Implementing recursive processes, however, requires an additional mechanism. Consider the 

following recursive method for computing factorials, which we first examined in section:  

(define (factorial n) 

  (if ( n == 1) 

      Return 1 

      (else return (factorial (n - 1))* n))) 

As we see from the procedure, computing n! requires computing (n-1)!. Our GCD machine, 

modeled on the procedure  

(define (gcd a b) 

  (if (b == 0) 
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return      a 

else 

 

      return(gcd b (remainder a b)))) 

Similarly had to compute another GCD. But there is an important difference between the gcd 

procedure, which reduces the original computation to a new GCD computation, and 

factorial, which requires computing another factorial as a sub-problem. In GCD, the 

answer to the new GCD computation is the answer to the original problem. To compute the 

next GCD, we simply place the new arguments in the input registers of the GCD machine and 

reuse the machine's data paths by executing the same controller sequence. When the machine 

is finished solving the final GCD problem, it has completed the entire computation.  

In the case of factorial (or any recursive process) the answer to the new factorial sub-problem 

is not the answer to the original problem. The value obtained for (n-1)!, must be multiplied by 

n to get the final answer. If we try to imitate the GCD design, and solve the factorial sub-

problem by decrementing the n register and rerunning the factorial machine, we will no 

longer have available the old value of n by which to multiply the result. We thus need a 

second factorial machine to work on the sub-problem. This second factorial computation 

itself has a factorial sub-problem, which requires a third factorial machine, and so on. Since 

each factorial machine contains another factorial machine within it, the total machine 

contains an infinite nest of similar machines and hence cannot be constructed from a fixed, 

finite number of parts.  

Nevertheless, we can implement the factorial process as a register machine if we can arrange 

to use the same components for each nested instance of the machine. Specifically, the 

machine that computes n! should use the same components to work on the sub-problem of 

computing (n-1)!, on the sub-problem for (n-2)!, and so on. This is plausible because, 

although the factorial process dictates that an unbounded number of copies of the same 

machine are needed to perform a computation, only one of these copies needs to be active at 

any given time. When the machine encounters a recursive sub-problem, it can suspend work 

on the main problem, reuse the same physical parts to work on the sub-problem, then 

continue the suspended computation.  

In the sub-problem, the contents of the registers will be different than they were in the main 

problem. (In this case the n register is decremented.) In order to be able to continue the 

suspended computation, the machine must save the contents of any registers that will be 

needed after the sub-problem is solved so that these can be restored to continue the suspended 

computation. In the case of factorial, we will save the old value of n, to be restored when we 

are finished computing the factorial of the decremented n register. 

Since there is no a priori limit on the depth of nested recursive calls, we may need to save an 

arbitrary number of register values. These values must be restored in the reverse of the order 

in which they were saved, since in a nest of recursions the last sub-problem to be entered is 
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the first to be finished. This dictates the use of a stack, or ``last in, first out'' data structure, to 

save register values. We can extend the register-machine language to include a stack by 

adding two kinds of instructions: Values are placed on the stack using a save instruction and 

restored from the stack using a restore instruction. After a sequence of values has been 

saved on the stack, a sequence of restores will retrieve these values in reverse order. 

With the aid of the stack, we can reuse a single copy of the factorial machine's data paths for 

each factorial sub-problem. There is a similar design issue in reusing the controller sequence 

that operates the data paths. To re-execute the factorial computation, the controller cannot 

simply loop back to the beginning, as with an iterative process, because after solving the (n-

1)! Sub-problem the machine must still multiply the result by n. The controller must suspend 

its computation of n!, solve the (n-1)! Sub-problem, then continue its computation of n!. This 

view of the factorial computation suggests the use of the subroutine mechanism described in 

section, which has the controller use a continue register to transfer to the part of the 

sequence that solves a sub-problem and then continue where it left off on the main problem. 

We can thus make a factorial subroutine that returns to the entry point stored in the continue 

register. Around each subroutine call, we save and restore continue just as we do the n 

register, since each ``level'' of the factorial computation will use the same continue register. 

That is, the factorial subroutine must put a new value in continue when it calls itself for a 

sub-problem, but it will need the old value in order to return to the place that called it to solve 

a sub-problem.  

Figure shows the data paths and controller for a machine that implements the recursive 

factorial procedure. The machine has a stack and three registers, called n, val, and 

continue. To simplify the data-path diagram, we have not named the register-assignment 

buttons, only the stack-operation buttons (sc and sn to save registers, rc and rn to restore 

registers). To operate the machine, we put in register n the number whose factorial we wish to 

compute and start the machine. When the machine reaches fact-done, the computation is 

finished and the answer will be found in the val register. In the controller sequence, n and 

continue are saved before each recursive call and restored upon return from the call. 

Returning from a call is accomplished by branching to the location stored in continue. 

Continue is initialized when the machine starts so that the last return will go to fact-done. 

The val register, which holds the result of the factorial computation, is not saved before the 

recursive call, because the old contents of val is not useful after the subroutine returns. Only 

the new value, which is the value produced by the sub-computation, is needed.  

Although in principle the factorial computation requires an infinite machine, the machine in 

figure is actually finite except for the stack, which is potentially unbounded. Any particular 

physical implementation of a stack, however, will be of finite size, and this will limit the 

depth of recursive calls that can be handled by the machine. This implementation of factorial 

illustrates the general strategy for realizing recursive algorithms as ordinary register machines 

augmented by stacks. When a recursive sub-problem is encountered, we save on the stack the 

registers whose current values will be required after the sub-problem is solved, solve the 

recursive sub-problem, then restore the saved registers and continue execution on the main 

problem. The continue register must always be saved. Whether there are other registers that 
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need to be saved depends on the particular machine, since not all recursive computations 

need the original values of registers that are modified during solution of the sub-problem (see 

exercise ).  

A double recursion  

Let us examine a more complex recursive process, the tree-recursive computation of the 

Fibonacci numbers, which we introduced in section :  

(define (fib n) 

  (if (n < 2) 

      Return n 

      (return(fib (n - 1))+ (fib (n - 2))))) 

Just as with factorial, we can implement the recursive Fibonacci computation as a register 

machine with registers n, val, and continue. The machine is more complex than the one for 

factorial, because there are two places in the controller sequence where we need to perform 

recursive calls--once to compute Fib(n-1) and once to compute Fib(n-2). To set up for each of 

these calls, we save the registers whose values will be needed later, set the n register to the 

number whose Fib we need to compute recursively (n-1 or n-2), and assign to continue the 

entry point in the main sequence to which to return (afterfib-n-1 or afterfib-n-2, 

respectively). We then go to fib-loop. When we return from the recursive call, the answer is 

in val. Figure shows the controller sequence for this machine.  
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Exercise. Specify register machines that implement each of the following procedures. For 

each machine, write a controller instruction sequence and draw a diagram showing the data 

paths.  

a. Recursive exponentiation:  

(define (expt b n) 

  (if (n = 0) 

      Return 1 

      (return b * (expt b ( n - 1))))) 

b. Iterative exponentiation:  

(define (expt b n) 

  (define (expt-iter counter product) 

    (if (counter == 0) 

 Return product 

        Return (expt(counter - 1) - iter (b * product)))) 

Exercise. Hand-simulate the factorial and Fibonacci machines, using some nontrivial input 

(requiring execution of at least one recursive call). Show the contents of the stack at each 

significant point in the execution.   

Exercise. Ben Bitdiddle observes that the Fibonacci machine's controller sequence has an 

extra save and an extra restore, which can be removed to make a faster machine. Where are 

these instructions?  

int factorial(int number) { 

 int temp; 

 

 if(number <= 1) return 1; 

 

 temp = number * factorial(number - 1); 

 return temp; 
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Reversing the Integer value using Stack with Array Implementation 

o Reverse an integer by two stacks: 

import java.util.Scanner; 
 
public class Stack { 
  
 private int maxSize;        // size of stack array 
 private long[] stackArray; 
 private int top;            // top of stack 
  
 //-------------------------------------------------------------public 
 Stack()         // constructor 
 { 
  Scanner scan=new Scanner(System.in); 
  int s; 
  System.out.println("Enter size of Stack:\t"); 
  s=scan.nextInt(); 
  maxSize = s;             // set array size 
  stackArray = new long[maxSize];  // create array 
  top = -1;                // no items yet 
 } 
 //-------------------------------------------------------------public 
 void push(long j)    // put item on top of stack 
 { 
 stackArray[++top] = j;     // increment top, insert item 
 } 
  
 public long pop()           // take item from top of stack 
 { 
 return stackArray[top--];  // access item, decrement top 
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 } 
 //-------------------------------------------------------------public 
 long peek()          // peek at top of stack 
 { 
 return stackArray[top]; 
 } 
 //-------------------------------------------------------------public 
 boolean isEmpty()    // true if stack is empty 
 { 
 return (top == -1); 
 } 
 //-------------------------------------------------------------public 
 boolean isFull()     // true if stack is full 
 { 
 return (top == maxSize-1); 
 } 
 //-------------------------------------------------------------} 
  // end class StackX 
 //////////////////////////////////////////////////////////////// 
  
 public static void main(String[] args) { 
 
  Scanner scan=new Scanner(System.in); 
  Stack theStack=new Stack(); 
  Stack S=new Stack(); 
   
  int n; 
  System.out.println("Push "+ theStack.maxSize +" Input:   "); 
  for(int i=0;i<theStack.maxSize;i++) 
  { 
  n=scan.nextInt(); 
  theStack.push(n);               // push items onto stack 
  } 
  while( !theStack.isEmpty() )     // until it’s empty, 
  {                             // delete item from stack 
  long value = theStack.pop(); 
  System.out.print(value);      // display it 
  S.push(value); 
  System.out.print("  "); 
  }  // end while 
  System.out.println("  "); 
   
  
 
} 

}  

 

Stack Application: 

Prefix : An expression is called the prefix expression if the operator appears in the 

expression before the operands. Simply of the form (operator operand1 operand2). 

Example : *+AB-CD (Infix : (A+B) * (C-D) ) 

Postfix: An expression is called the postfix expression if the operator appears in the 

expression after the operands. Simply of the form (operand1 operand2 operator). 

Example : AB+CD-* (Infix : (A+B * (C-D) ) 
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The most straightforward method is to start by inserting all the implicit brackets 

that show the order of evaluation e.g.: 

Infix Postfix Prefix 

( (A * B) + (C / D) ) ( (A B *) (C D /) +) (+ (* A B) (/ C D) ) 

((A * (B + C) ) / D) ( (A (B C +) *) D /) (/ (* A (+ B C) ) D) 

(A * (B + (C / D) ) ) (A (B (C D /) +) *) (* A (+ B (/ C D) ) ) 

 

Algorithm for Prefix to Postfix: 

 Read the Prefix expression in reverse order (from right to left) 

 If the symbol is an operand, then push it onto the Stack 

 If the symbol is an operator, then pop two operands from the Stack 

Create a string by concatenating the two operands and the operator after them. 

 string = operand1 + operand2 + operator 

 And push the resultant string back to Stack 

 Repeat the above steps until end of Prefix expression. 

Code 

import java.util.*;  
   
class GFG  
{  
static boolean isOperator(char x)   
{  
    switch (x)   
    {  
        case '+':  
        case '-':  
        case '/':  
        case '*':  
        return true;  
    }  
    return false;  
}  
   
static String preToPost(String pre_exp)  
{  
   
    Stack<String> s= new Stack<String>();  
    int length = pre_exp.length();  
    for (int i = length - 1; i >= 0; i--)   
    {  
        if (isOperator(pre_exp.charAt(i)))   
        {  
            String op1 = s.peek(); s.pop();  
            String op2 = s.peek(); s.pop();  
          String temp = op1 + op2 + pre_exp.charAt(i);  
           s.push(temp);  
        }  
        else 
        {  
           s.push( pre_exp.charAt(i)+"");  
        }  
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    }  
    return s.peek();  
}  
public static void main(String args[])   
{  
    String pre_exp = "*-A/BC-/AKL";  
    System.out.println("Postfix : " + preToPost(pre_exp));  
}  
}  

 

Algorithm for Postfix to Prefix: 

 Read the Postfix expression from left to right 

 If the symbol is an operand, then push it onto the Stack 

 If the symbol is an operator, then pop two operands from the Stack 

Create a string by concatenating the two operands and the operator before them. 

string = operator + operand2 + operand1 

 And push the resultant string back to Stack 

 Repeat the above steps until end of Prefix expression. 

// Java Program to convert postfix to prefix  

import java.util.*;  

class GFG {  

 static boolean isOperator(char x)  

 {  

 

  switch (x) {  

  case '+':  

  case '-':  

  case '/':  

  case '*':  

   return true;  

  }  

  return false;  

 }  

 static String postToPre(String post_exp)  

 {  

  Stack<String> s = new Stack<String>();  

  int length = post_exp.length();  

  for (int i = 0; i < length; i++) {  

   if (isOperator(post_exp.charAt(i))) {  

    String op1 = s.peek();  

    s.pop();  

    String op2 = s.peek();  

    s.pop();  

    String temp = post_exp.charAt(i) + op2 + op1;  

    s.push(temp);  

   }  

   else {  

    s.push(post_exp.charAt(i) + "");  

   }  
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  }  

  return s.peek();  

 }  

 

  public static void main(String args[])  

 {  

  String post_exp = "ABC/-AK/L-*";  

  System.out.println("Prefix : " + postToPre(post_exp));  

 }  }  

 


