Week-12 -1- Data Structures

Lesson 23-24

Objectives

e Tree with Array
= Introduction of Tree
e Binary Search Tree Concept in Array
= Binary Search Tree
= Binary Search Tree via Array

e Insertion
o How to insert in Binary Tree?
o Insertion

e Deletion

o How to delete in Binary Search Tree?
= Deleting a leaf
= Deleting a node with one (Right) children
= Deleting a node with two children

o Deletion

Tree

e Actree is afinite set of one or more nodes such that
1.There is a specially designated node called root.
2. The remaining nodes are called the sub trees of the root.

e Treeisasubset of graph but it is never circular.

e Each node must be directly or indirectly connected to the root of the tree.

e Trees have a strict hierarchical structure where one node is root node and all
others nodes are its children.

Introduction of Tree:

Suppose the following tree: Level

N\F 0

Week-12 -2- Data Structures

F is the root node

D is the parent of C and E

C is the sibling of B

I and L are the children of K

C, E, M, | are external nodes, or leaves
The level of E is 2

The height (depth) of the tree is 3

The ancestors of node | is A, C, H

The descendants of node Cis F, G, H, |

Binary Search Tree Concept in Array:

If a node has an index i, its children are found at indices (for the left child) 2i+1 and (for the
right) 2i+2.

(F 19]I9)|®

O 1 Z 3 4 5 5

e A unique path exists from the root to every other node.

notTree

™
e

Not a Valid Binary Tree

Week-12

-3-

Data Structures

e Nodes are organize in levels (indexed from 0).

e | evel (or depth) of a node: number of edges in the path from the root to that node.

¢ Height of a tree h: The height of a node is the number of edges from the node to the
deepest leaf

e Full tree: every node has exactly two children and all the leaves are on the same
level.

/N

/N /

/\

> : —

Binary Search Tree:

e ltisatree in which each node has maximum of two child or sub nodes.

Level 0

Level 1

Level 2

Level 3

e A Binary Tree has two child at most and BST has smaller values on the left side and
larger on the right.

e Itisimplemented in two ways;

Put the values smaller or equal to root node on the left side of the tree and larger

1.

values to the right side of the tree.

Put the values smaller or equal to root node on the right side of the tree and larger

values to the left side of the tree.

Week-12

-4- Data Structures

tree

E

(Root node)

DI
/ \ Sl
~
<
~,

-

/

j

/

i
/
i
A
i
i
i
1
1

\

\

\

\ B
\

\
\

\\ (Left ,/
N subtree) 2

N e

o)

S
s i T

W

~
~.

All values in the
left subtree are
less than the value
in the root node.

Binary Search Tree via Array:

How to Insert in BST?

Sl
S

-
-
—

e |

S

\

' \
\ \

\
1
1
1
|
1
!
!

\
\\ (Right J
\._ subtree) /

~
Qs T g

All values in the
right subtree are
greater than the value
in the root node.

Stepl: if the tree is empty,then Root (T) =z.

Step2: Pretending we are searching for zin BST T, until we meet a null node.

Insertion:

For insert we apply the above two steps. The code of insertion in BST is below.

void insert(int x, int i)

{
if (A[i]==-
A[i]=x;
else
{
if(A[i]>x)

insert(x,2*1+2)

else if(A[i]<x)

else

insert(x,2*1+2)

System.out.println("already inserted");

}

Week-12 -5- Data Structures

How to delete in BST?

First, find the item; then, delete it

Binary search tree property must be preserved!!

We need to consider three different cases:
(1) Deleting a leaf
(2) Deleting a node with only one child
(3) Deleting a node with two children

1. Deleting a node with two children
Find and remove it.

For example: We delete Z from the below picture which doesn’t have further
sub nodes. We’ll just set Null to it.

treeB\] MB\J
o e o i
/\ /\

delete

®

Delete the node containing Z

2. Deleting a node with two children

e Find predecessor (i.e., leftmost node in the right sub tree)
e Replace the data of the node to be deleted with predecessor's data.
e Delete predecessor node,

Week-12 -6- Data Structures

r'l‘" ...- J |] "}j.
3. Delﬁ ng nod.e with two children pll |

in predéeessor (i.e.; rightmost node in the left subtree) I:--II-l| .
o R

Q Ia(tﬂne data of the node to be deleted with predecessor's data

Iete"p'redecessor node

Deletion:

For deletion we apply the above three conditions to delete anything that we have to
delete from the BST via Array. The code of insertion in BST is below.

void remove(int x, int i)

Week-12 -7- Data Structures

{
while(a[i]!=-1)
{
if(a[i]==x || i>=size)
break;
else
{
if(a[i]>x)
i=i*2+41;
else if(a[i]>x)
i=i*2+1;
else
System.out.println("not found");
}
}

if(i>=size)
System.out.println("not found");
else if(i<size)
{
if(a[i]==-1)
System.out.println("not found");
else
{
if(i*2+1>=size && i*2+2>=size)
a[i]=-1;
else if(a[i*2+1]=-1 && a[i*2+2]=-1)
a[il=-1;
else if(a[i*2+1]=-1 && a[i*2+2]!=-1)
{
int y=2%i+2;
while(a[y]!=-1)
y=y*2+1;
y=(y-1)/2;
a[i]=aly];

remove(aly],y);

Week-12 -8- Data Structures

else if(a[i*2+1]!=-1 && a[i*2+2]==-1)
{
int y=2*%i+2;
while(a[y]!=-1)
y=y*2+1;
y=(y-1)/2;
alil=alyl;
remove (a[yl,y);
}
else if(a[i*2+1]!=-1&& a[i*2+2]!=-1)
{
int y=2%i+1;
while(a[z!=-1)
Z=2*%2+42;
z=(z-1)/2;
a[i]=a[z];

remove(al[z],z);

