Week-16 -1- Data Structures

L_esson 31-32

Objectives
e Hashing

Hashing

Find the Hash Function

Characteristics of good hashing function
Collision

Solutions for Handling Collision
Implementing Hashing

O O O O O O

Hashing:

Hashing is a technique that is-used to uniquely identify a specific object from a group of
similar objects. Some examples of how hashing is used in our lives include:

« Inuniversities, each student is assigned a unique roll number that can be used to
retrieve information about them.

o Inlibraries, each book is assigned a unique number that can be used to determine
information about the book, such as its exact position in the library or the users it has
been issued to etc.

In both these examples the students and books were hashed to a unique number.

Hashing is a technique which uses less key comparisons and searches the element

in O(n) time in the worst case and in an average case it will be done in O(1) time. This
method generally used the hash functions to map the keys into a table, which is called a hash
table.

1) Hash table

Hash table is a type of data structure which is used for storing and accessing data very
quickly. Insertion of data in a table is based on a key value. Hence every entry in the hash
table is defined with some key. By using this key data can be searched in the hash table by
few key comparisons and then searching time is dependent upon the size of the hash table.

2) Hash function

Hash function is a function which is applied on a key by which it produces an integer, which
can be used as an address of hash table. Hence one can use the same hash function for

Week-16 -2- Data Structures

accessing the data from the hash table. In this the integer returned by the hash function is
called hash key.

Types of Finding Hash Function

There are various types of hash function which are used to place the data in a hash table.

1. Division method

In this the hash function is dependent upon the remainder of a division. For example:-if the
record 52,68,99,84 is to be placed in a hash table and let us take the table size is 10.

Then:

h(key)=record% table size.
2=52%10
8=68%10
9=99%10

4=84%10

DIVISION METHOD

2. Mid square method
In this method firstly key is squared and then mid part of the result is taken as the index.

For example: consider that if we want to place a record of 3101 and the size of table is 1000.
S0 3101*3101=9616201 i.e. h (3101) = 162 (middle 3 digit)

Week-16 -3- Data Structures

3. Digit folding method

In this method the key is divided into separate parts and by using some simple operations
these parts are combined to produce a hash key. For example: consider a record of 12465512
then it will be divided into parts i.e. 124, 655, 12. After dividing the parts combine these parts
by adding it.

H(key)=124+655+12

=791
Characteristics of good hashing function

1. The hash function should generate different hash values for the similar string.

The hash function is easy to understand and simple to compute.

3. The hash function should produce the keys which will get distributed, uniformly over
an array.

4. A number of collisions should be less while placing the data in the hash table.

5. The hash function is a perfect hash function when it uses all the input data.

N

Collision

It is a situation in which the hash function returns the same hash key for more than one
record, it is called as collision. Sometimes when we are going to resolve the collision it may
lead to a overflow condition and this overflow and collision condition makes the poor hash
function.

Solutions For Handling Collisions:

If there is a problem of collision occurs then it can be handled by apply some technique.
These techniques are called as collision resolution techniques. There are generally four

techniques which are described below.
1) Chaining

It is a method in which additional field with data i.e. chain is introduced. A chain is
maintained at the home bucket. In this when a collision occurs then a linked list is maintained
for colliding data.

Example:

Let us consider a hash table of size 10 and we apply a hash function of H(key)=key % size of
table. Let us take the keys to be inserted are 31,33,77,61. In the below diagram we can see at
same bucket 1 there are two records which are maintained by linked list or we can say by

chaining method.

Week-16 -4- Data Structures

0] nuLL

1 —{31] gt 61] N

2| nNuLL
: —>{zl]
4NULL
s| NULL

6] NULL

§ =[] W]

8] NULL

9] NULL

2) Linear probing

It is very easy and simple method to resolve or to handle the collision. In this collision can be
solved by placing the second record linearly down, whenever the empty place is found. In
this method there is a problem of clustering which means at some place block of a data is
formed in a hash table.

Example: Let us consider a hash table of size 10 and hash function is defined as H(key)=key
% table size. Consider that following keys are to be inserted that are 56,64,36,71.

(]

NULL

71
NULL

NULL
64

NULL

56

36

NULL

00 N o U AW N

NULL

\O

In this diagram we can see that 56 and 36 need to be placed at same bucket but by linear
probing technique the records linearly placed downward if place is empty i.e. it can be seen
36 is placed at index 7.

Week-16 -5- Data Structures

3) Quadratic probing

This is a method in which solving of clustering problem is done. In this method the hash
function is defined by the H(key)=(H(key)+x*x)%table size. Let us consider we have to
insert following elements that are:-67, 90,55,17,49.

=

B0

H W N s

w

55

8j17

949

In this we can see if we insert 67, 90, and 55 it can be inserted easily but at case of 17 hash
function is used in such a manner that :-(17+0*0)%210=17 (when x=0 it provide the index
value 7 only) by making the increment in value of x. let x =1 so (17+1*1)%10=8.in this case
bucket 8 is empty hence we will place 17 at index 8.

4) Double hashing

It is a technique in which two hash function are used when there is an occurrence of collision.
In this method 1 hash function is simple as same as division method. But for the second hash
function there are two important rules which are

1. It must never evaluate to zero.
2. Must sure about the buckets, that they are probed.

The hash functions for this technique are:

H1(key)=key % table size

H2(key)=P-(key mod P)
Where, p is a prime number which should be taken smaller than the size of a hash table.

Example: Let us consider we have to insert 67, 90,55,17,49.

Week-16 -6-

Data Structures

o

B0

17

HW N e

55

w

o] 49

In this we can see 67, 90 and 55 can be inserted in a hash table by using first hash function
but in case of 17 again the bucket is full and in this case we have to use the second hash
function which is H2(key)=P-(key mode P) -here p is-a prime number which should be taken

smaller than the hash table so value of p will be the 7.

i.e. H2(17)=7-(17%7)=7-3=4 that means we have to take 4 jumps for placing the 17.

Therefore 17 will be placed at index 1.

The hash.java Program

import java.io.*;
TN 1T 11171771771177177111717711777
class Dataltem

{ // (could have more data)

private int iData; // data item (key)

e T e public
Dataltem(int ii) // constructor

{ iData = ii; }
e

public int getKey()

{return iData; }

// end class Dataltem

111 117711177111777117711177111171111111177711
class HashTable

{
private Dataltem(] hashArray; // array holds hash table

private int arraySize;

private Dataltem nonltem; // for deleted items

public HashTable(int size) ~ // constructor

{

Week-16

Data Structures

arraySize = size;

hashArray = new Dataltem[arraySize];

nonltem = new Dataltem(-1); // deleted item key is -1

}

void displayTable()

{

System.out.print(“Table: «);
for(int j=0; j<arraySize; j+ +)
{

if(hashArrayf[j] != null)
System.out.print(hashArray([j].getKey() + «“);
else

System.out.print(“** «);

}

System.out.printin(“”);

}

int hashFunc(int key)
{
return key % arraySize; // hash function

}

void insert(Dataltem item) // insert a Dataltem
//

(assumes table not full)

{

int key = item.getKey(); // extract key

int hashVal = hashFunc(key); // hash the key
// until empty cell or -1,
while(hashArray[hashVal] != null &&
hashArray[hashVal].getKey() != -1)

{

++hashVal; // go to next cell
hashVal %= arraySize; // wraparound if necessary
}

hashArray[hashVal] = item; // insert item

} // end insert()

Dataltem delete(int key) // delete a Dataltem

{

int hashVal = hashFunc(key); // hash the key
while(hashArray[hashVal] != null) // until empty cell,
{ // found the key?
if(hashArray[hashVal].getKey() == key)

{

Dataltem temp = hashArray[hashVal]; // save item
hashArray[hashVal] = nonltem; // delete item

return temp; // return item

Week-16

Data Structures

}

++hashVal; // go to next cell

hashVal %= arraySize; // wraparound if necessary
}

return null; // can’t find item

} // end delete()

Dataltem find(int key) // find item with key

{

int hashVal = hashFunc(key); // hash the key
while(hashArray[hashVal] != null) // until empty cell,
{ // found the key?
if(hashArray[hashVal].getKey() == key)

return hashArraylhashVal]; // yes, return item
++hashVval; // go to next cell

hashVal %= arraySize; // wraparound if necessary
}

return null; // can’t find item

}

// end class HashTable

T 11111717177

class HashTableApp
{

public static void main(String[] args) throws IOException

{

Dataltem aDataltem;

int aKey, size, n, keysPerCell;

// get sizes

System.out.print(“Enter size of hash table: «);
size = getInt();

System.out.print(“Enter initial number of items: <);
n = getint();

keysPerCell = 10;

// make table

HashTable theHashTable = new HashTable(size);
for(int j=0; j<n; j++) // insert data

{

aKey = (int)(java.lang.Math.random() *
keysPerCell * size);

aDataltem = new Dataltem(aKey);
theHashTable.insert(aDataltem);

}

while(true) // interact with user

{

System.out.print(“Enter first letter of «);
System.out.print(“show, insert, delete, or find: «);
char choice = getChar();

switch(choice)

Week-16 -9-

Data Structures

{

case ‘s’

theHashTable.displayTable();

break;

case ‘i”:

System.out.print(“Enter key value to insert: «);
aKey = getint();

aDataltem = new Dataltem(aKey);
theHashTable.insert(aDataltem);

break;

case ‘d”:

System.out.print(“Enter key value to delete: «);
aKey = getint();

theHashTable.delete(aKey);

break;

case ‘f:

System.out.print(“Enter key value to find: ©);

aKey = getint();

aDataltem = theHashTable.find(aKey);
if(aDataltem = null)

{

System.out.printin(“Found « + aKey);
}

else

System.out.printIn(“Could not find « + aKey);
break;

default:

System.out.print(“Invalid entry¥n”);

} // end switch

} // end while

} // end main()

static String getString() throws IOException

{

InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);

String s = br.readLine();

return s;

}

static char getChar() throws IOException

{

String s = getString();
return s.charAt(0);

}

static int getInt() throws IOException

{
String s = getString();

Week-16 -10- Data Structures

return Integer.parselnt(s);

}

