Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

(Week 1) Lecture 1 & 2

Objectives: Learning objectives of these lectures are

Students will able to understand:

What is Compiler?

What is Interpreter?

What is Hybrid Compiler?

What is Language Processor?

What is Language Processor System?

What are the Components of Language Processor System?
o Preprocessor

Compiler

Assembler

Linker

Loader

(@)
(@)
(@)
(@)

Text Book & Resources:
Compilers Principles Techniques and Tools (2nd Edition) by Alfread V. Aho, Ravi Sethi.

Videos Links:

https://youtu.be/e3fyo3uBGQw (Part 1)
https://youtu.be/h xWnDN5KIs (Part 2)
https://youtu.be/6vcZdFk2nL8 (Part 3)

Lecture-1-2 Page 1 of 7

https://youtu.be/e3fyo3uBGQw
https://youtu.be/h_xWnDN5Kls
https://youtu.be/6vcZdFk2nL8

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010
Introduction ot Compiler Construction

Computers are a balanced mix of software and hardware. Hardware is just a piece of mechanical
device and its functions are being controlled by compatible software. Hardware understands
instructions in the form of electronic charge, which is the counterpart of binary language in
software programming. Binary language has only two alphabets, 0 and 1. To instruct, the
hardware codes must be written in binary format, which is simply a series of 1s and 0s. It would
be a difficult and cumbersome task for computer programmers to write such codes, which is why
we have compilers to write such codes.

Language Processors

Simply stated, a compiler is a program that can read a program in one language - the source
language - and translate it into an equivalent program in another language - the target language.
An important role of the compiler is to report any errors in the source program that it
detects during the translation process.

source program

¥

Compiler
target program

If the target program is an executable machine-language program, it can then be called by the
user to process inputs and produce outputs.

input {;‘arget Program |—= output

An interpreter is another common kind of language processor. Instead of producing a target
program as a translation, an interpreter appears to directly execute the operations specified in the
source program on inputs supplied by the user.

source program
Interpreter = output
input

The machine-language target program produced by a compiler is usually much faster than an
interpreter at mapping inputs to outputs. An interpreter, however, can usually give better error
diagnostics than a compiler, because it executes the source program statement by statement.

Lecture-1-2 Page 2 of 7

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Example

Java language processors combine compilation and interpretation, as shown in Fig. A Java
source program may first be compiled into an intermediate form called byte codes. The byte
codes are then interpreted by a virtual machine. A benefit of this arrangement is that byte codes
compiled on one machine can be interpreted on another machine, perhaps across a network. In
order to achieve faster processing of inputs to outputs, some Java compilers, called just-in-time
compilers, translate the byte codes into machine language immediately before they run the
intermediate program to process the input.

SOUTCe Program
|

'

Translator

4

intermediate program —

Virtual

: —e CUtput
Machine P

input —m

In addition to a compiler, several other programs may be required to create an executable target
program. A source program may be divided into modules stored in separate files. The task of
collecting the source program is sometimes entrusted to a separate program, called a
preprocessor. The preprocessor may also expand shorthand, called macros, into source language
statements.

The modified source program is then fed to a compiler. The compiler may produce an assembly
language program as its output, because assembly language is easier to produce as output
and is easier to debug. The assembly language is then processed by a program called an
assembler that produces relocatable machine code as its output .

Large programs are often compiled in pieces, so the relocatable machine code may have to be
linked together with other relocatable object files and library files into the code that actually
runs on the machine. The linker resolves external memory addresses, where the code in one file
may refer to a location in another file. The loader then puts together the entire executable object
files into memory for execution.

Lecture-1-2 Page 3 0of 7

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

SOUTrCe DPrograrm

Preprocessor

modified source prograrmn

Compiler {

¥ -

target assembly program

L Assembler

relocatable machine code

¥

| Linker /Loader

library files
relocatable object files

target machine code

Language Processor System

We have learnt that any computer system is made of hardware and software. The hardware
understands a language, which humans cannot understand. So we write programs in high-level
language, which is easier for us to understand and remember. These programs are then fed into a
series of tools and OS components to get the desired code that can be used by the machine. This
is known as Language Processing System.

The high-level language is converted into binary language in various phases. A compiler is a
program that converts high-level language to assembly language. Similarly, an assembler is a
program that converts the assembly language to machine-level language.
Let us first understand how a program, using C compiler, is executed on a host machine.
e User writes a program in C language (high-level language).
e The C compiler compiles the program and translates it to assembly program (low-level
language).
e An assembler then translates the assembly program into machine code (object).
e Alinker tool is used to link all the parts of the program together for execution (executable
machine code).
e A loader loads all of them into memory and then the program is executed.

Before diving straight into the concepts of compilers, we should understand a few other tools that
work closely with compilers.

Lecture-1-2 Page 4 of 7

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Source Code

Pre Processor

Pre-processed -
Code

o, -5
Compiler

Target _
Assembly Code

Assembler

Relocatable _
Machine Code
——» Library files/
Linker Relocatable

“+— modules
Executable .

Machine Code

Memory

Preprocessor
A preprocessor, generally considered as a part of compiler, is a tool that produces input for
compilers. It deals with macro-processing, augmentation; file inclusion, language extension, etc.

It operates on any line that begins with a pound/ hash sign. The preprocessor can only cut, copy
and paste the text. It is part of compiler that runs before any code is compiled.
The symbol # includes macros and compiler specific directives e.g.
define
include
(i) File Inclusion:
It includes the library in your program and brings file before compilation.
e.g # include<stdlib.h>
include<math.h>

(i) Macro Definition:
Macros provide a way of performing textual substitutions inline in your code.
Perform some duties as templates and inline functions. e.g
define X 3
defineY A*B+C
define SQUARED (x) x*x
main()
{
int y=2;
int S= SQUARED(y);
}

Lecture-1-2 Page 5 of 7

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010
Interpreter

An interpreter, like a compiler, translates high-level language into low-level machine language.
The difference lies in the way they read the source code or input. A compiler reads the whole
source code at once, creates tokens, checks semantics, generates intermediate code, executes the
whole program and may involve many passes. In contrast, an interpreter reads a statement from
the input converts it to an intermediate code, executes it, then takes the next statement in
sequence. If an error occurs, an interpreter stops execution and reports it; whereas a compiler
reads the whole program even if it encounters several errors.

Assembler

An assembler translates assembly language programs into machine code. The output of an
assembler is called an object file, which contains a combination of machine instructions as well
as the data required to place these instructions in memory.

Assembly Code

Assembly code is a mnemonic version of machine code in which names are used for operations
and memory addresses instead of binary codes.
A mnemonic (memory aid) is any kind of trick we use to help us remember.

Example:

C=atb

Assembly code

LD rl,a

LD r2,b

ADD r3,r1,r2

ST C,r3

Now what assembler will do with this code can be understand by two pass assembler.

Two Pass Assembler

Simplest form of assembler makes two passes over the input.
Q) First Pass:

In the first pass all the identifiers that denote memory location are found and stored in symbol
table by giving them address of some bytes.
Identifier Address

a 0
b 4
C 16

All identifiers are assigned to memory addresses.

Lecture-1-2 Page 6 of 7

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

(i) Second Pass:

In the second pass assembler scans the input again. This time it translates each op code into
sequence of bits, representing that operation in machine language.

It also translates each identifier into address of memory location.

So second pass produces relocatable machine code.

Operations Registers Tag Addresses
0001 01 00 00000010
0001 10 00 00000100
0011 11 00 00000000
0010 11 00 00010000

Linker

Linker is a computer program that links and merges various object files together in order to make
an executable file. All these files might have been compiled by separate assemblers. The major
task of a linker is to search and locate referenced module/routines in a program and to determine
the memory location where these codes will be loaded, making the program instruction to have
absolute references.

Loader

Loader is a part of operating system and is responsible for loading executable files into memory
and executes them. It calculates the size of a program (instructions and data) and creates memory
space for it. It initializes various registers to initiate execution.

Cross-compiler

A compiler that runs on platform (A) and is capable of generating executable code for platform
(B) is called a cross-compiler.

Source-to-source Compiler

A compiler that takes the source code of one programming language and translates it into the
source code of another programming language is called a source-to-source compiler.

Lecture-1-2 Page 7 of 7

