Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

(Week 7) Lecture 13 & 14

Objectives: Learning objectives of these lectures are

- Students will able to understand:
 - What is Left Recursion?
 - Which is Direct Left Recursion?
 - Which is Indirect Left Recursion?
 - o How to eliminate Direct Left Recursion?
 - o How to eliminate Indirect Left Recursion?
- Students will able to understand:
 - What is Left Factoring?
 - What is Left Factored Grammar?

Text Book & Resources:

- 1. Compilers Principles Techniques and Tools (2nd Edition) by Alfread V. Aho, Ravi Sethi.
- 2. Introduction to Computer Theroy By Daniel I.A. Cohen.

Videos Links:

https://youtu.be/PFAEPT8rjdY	(Part 1)
https://www.youtube.com/watch?v=xu-keaYj088	(Part 2)
https://www.youtube.com/watch?v=OfH5UvUghlY	(Part 3)
https://youtu.be/zD4xJ8HkXmk	(Part 4)
https://www.youtube.com/watch?v=COdq7B96KCg	(Part 5)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Left Recursion:

A grammar is left recursive if it has a non-terminal A such that there is a derivation $A \rightarrow Ab$ for some string a. Top-down parsing methods cannot handle left-recursive grammars, so a transformation is needed to eliminate left recursion.

In this lecture, we will discussed two types of left recursions

- Direct left recursion
- Indirect left recursion

Elimination of left recursion:

We first discussed direct or immediate left recursion, where there is a production of the form $A \rightarrow Ab$. Here, we study the general case. We showed how the left-recursive pair of productions $A \rightarrow A\alpha \mid \beta$ could be replaced by the non-left-recursive productions:

 $A \rightarrow A\alpha \mid \beta$

After Elimination

 $A \rightarrow \beta M$

 $M \rightarrow \alpha M \mid \in$

without changing the strings derivable from A. This rule by itself suffices for many grammars.

Description of Above Example

- First of identify the left recursion
- For every term which contain left recursion mention as " α "beside it. E.g. $A \rightarrow A\alpha \mid \beta$ Here A produces $A \rightarrow A\alpha$ and $A \rightarrow \beta$. So first production contain the left recursion. These productions can be written as $A \rightarrow \beta M$. For every β we can write these type of production with another non-terminal M(any Symbol can be used instead of M).
- For every α , new M symbol will be used for the production. E.g. $M \rightarrow \alpha M \mid \in$

- ⇒ A grammar is left recursive if it has a non-terminal A such that there is a derivation A → AX for some string X.
- \Rightarrow If production is of the form A \rightarrow AX, it is called immediate left recursion.

Dr. Naseer Ahmed Sajid email id: naseer@bit.edu.pk Whatsapp# 0346-5100010

$$A \rightarrow AX | B$$

Replace it with

$$A \rightarrow BA$$

$$A \to XA \in$$

Generic Example #2

Remove immediate left recursion by following technique.

$$A \rightarrow AX_1 \mid AX_2 \mid \dots \mid AX_m \mid B_1 \mid \dots \mid B_n.$$

Then replace by

$$A \rightarrow \ B_1 A \char` | \ B_2 A_1 \ | \ \dots \dots \ | \ B_n A \char`$$

$$A\,\check{}\,\rightarrow\,X_1A\,\check{}\,|\,X_2A_1\,|\,......|\,X_mA\,\check{}\,|\in$$

Example #3

Given CFG After Elimination of Left Recursion

 $E \rightarrow E + T$ $E \rightarrow TE$

 $E \rightarrow E - T$ $E \rightarrow +TE` \mid \in$

 $E \rightarrow T$ $E \rightarrow -TE' \mid \in$

 $T \rightarrow T * F$ $T \rightarrow FT$

 $T \rightarrow T/F$ $T \rightarrow *FT \mid \in$

 $T \rightarrow F$ $T \rightarrow /FT \mid \in$

 $F \rightarrow (E)$ $F \rightarrow (E)$

 $F \rightarrow id$ $F \rightarrow id$

Given CFG	Answer
$A \rightarrow ABd / Aa / a$	$A \rightarrow aA$
$B \rightarrow Be / b$	$A' \rightarrow BdA' / aA' / \in$
	$B \rightarrow bB$
	$B' \rightarrow eB' / \in$
	$A \rightarrow ABd / Aa / a$

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Example # 5

Given CFG	Answer
$E \rightarrow E + E / E \times E / a$	$E \rightarrow aA$
	$A \rightarrow +EA / xEA / \in$

Example # 6

Given CFG	Answer
$E \rightarrow E + T / T$	$E \rightarrow TE'$
$T \rightarrow T \times F / F$	$E' \rightarrow +TE' / \in$
$F \rightarrow id$	$T \rightarrow FT'$
	$T' \rightarrow xFT' / \in$
	$F \rightarrow id$

Example # 7

Given CFG	Answer
$S \rightarrow (L) / a$	$S \rightarrow (L) / a$
$L \rightarrow L$, S/S	$L \rightarrow SL'$
	$L' \rightarrow ,SL' / \in$

Example # 8

Given CFG	Answer
$S \rightarrow S0S1S / 01$	$S \rightarrow 01A$
	$A \rightarrow 0S1SA / \in$

Example # 9

Given CFG	Answer
$S \to A$	$S \to A$
$A \rightarrow Ad / Ae / aB / ac$	$A \rightarrow aBA' / acA'$
$B \rightarrow bBc/f$	$A' \rightarrow dA' / eA' / \in$
	$B \rightarrow bBc / f$

Given CFG	Answer
$A \rightarrow AA\alpha / \beta$	$A \rightarrow \beta A'$

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

$A' \rightarrow A\alpha A' / \in$

Indirect Left Recursion

Removing indirect left recursion:

$$S \rightarrow Aa \mid b \mid \in$$

$$A \rightarrow Ac \mid Sd \mid \in$$

$$S=> Aa=> Sda$$

Answer

$$S \rightarrow Aa \mid b \mid \in$$

 $A \rightarrow Ac \mid Aad \mid bd \mid d \mid \in$ (Replaced S values three times in this production and then apply direct method)

$$S \rightarrow Aa \mid b \mid \in$$

$$(d,bd, \in are \text{ takes as } \beta)$$

$$A^->cA^- adA^- \in$$

(c and ad are takes as α)

Example # 1

Given	CFG	T

$$A \rightarrow Ba / Aa / c$$

$$B \rightarrow Bb / Ab / d$$

Answer

Step-01:

First let us eliminate left recursion from A \rightarrow Ba / Aa / c

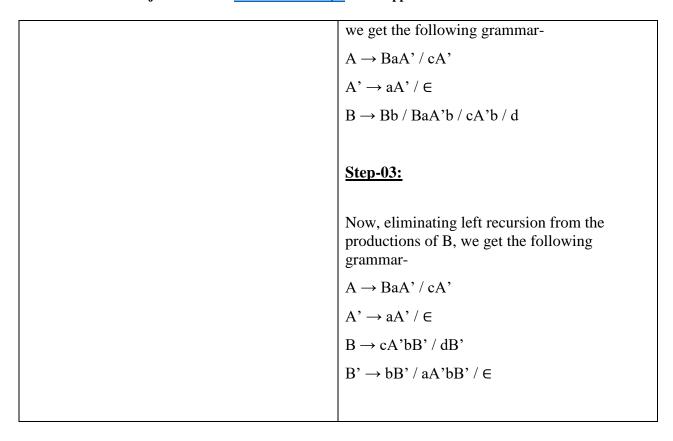
Eliminating left recursion from here, we get-

$$A \rightarrow BaA' / cA'$$

$$A' \rightarrow aA' / \in$$

Now, given grammar becomes-

$$A \rightarrow BaA' / cA'$$


$$A' \rightarrow aA' / \in$$

$$B \rightarrow Bb / Ab / d$$

Step-02:

Substituting the productions of A in $B \rightarrow Ab$,

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Given CFG	Answer
$X \rightarrow XSb / Sa / b$	<u>Step-01:</u>
$S \rightarrow Sb / Xa / a$	First let us eliminate left recursion from $X \rightarrow XSb / Sa / b$
	Eliminating left recursion from here, we get-
	$X \rightarrow SaX' / bX'$
	$X' \to SbX' / \in$
	Now, given grammar becomes-
	$X \rightarrow SaX' / bX'$
	$X' \to SbX' / \in$
	$S \rightarrow Sb / Xa / a$

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Substituting the productions of X in $S \rightarrow Xa$, we get the following grammar-

$$X \rightarrow SaX' / bX'$$

$$X' \rightarrow SbX' / \in$$

$$S \rightarrow Sb / SaX'a / bX'a / a$$

Step-03:

Now, eliminating left recursion from the productions of S, we get the following grammar-

$$X \rightarrow SaX' / bX'$$

$$X' \rightarrow SbX' / \in$$

$$S \rightarrow bX'aS' / aS'$$

$$S' \rightarrow bS' / aX'aS' / \in$$

Example # 3

Given CFG

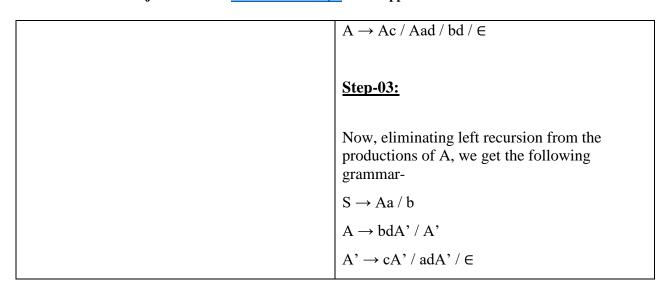
 $S \rightarrow Aa/b$

$$A \rightarrow Ac / Sd / \in$$

Answer

Step-01:

First let us eliminate left recursion from S \rightarrow Aa / b


This is already free from left recursion.

Step-02:

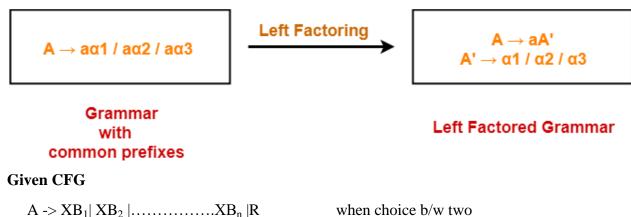
Substituting the productions of S in A \rightarrow Sd, we get the following grammar-

$$S \rightarrow Aa/b$$

email id: naseer@biit.edu.pk Whatsapp# 0346-5100010 Dr. Naseer Ahmed Sajid

Left factoring:

Left factoring is a process by which the grammar with common prefixes is transformed to make it useful for Top down parsers.


How?

In left factoring,

- We make one production for each common prefixes.
- The common prefix may be a terminal or a non-terminal or a combination of both.
- Rest of the derivation is added by new productions.

The grammar obtained after the process of left factoring is called as **Left Factored Grammar**.

Example #1

when choice b/w two

Then

alternative is not clear

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

$$A \to XA \hat{\ } \mid R$$
 then left- factor it
$$A \hat{\ } \to B_1 \mid B_2 \mid B_3 \mid \mid B_n$$

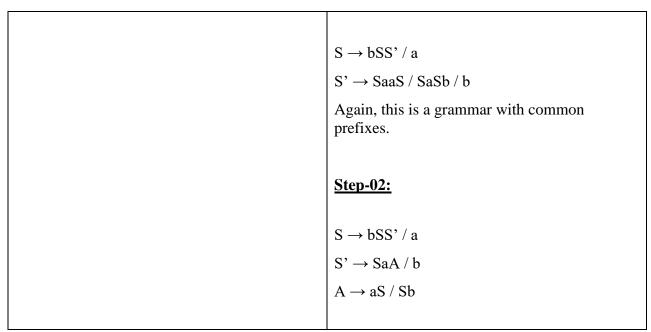
Description

In the given CFG, we can see that in the productions X is repeated in every production except R. Then we can take X as common and for all B's used A-dash and write the production as $A \rightarrow XA \mid R$

Then write the production for A-dash which shows all the values.

$$A^{\sim} -> B_1 \mid B_2 \mid B_3 \mid \mid B_n$$

Example #2


Given CFG	Answer
$S \rightarrow iEtS / iEtSeS / a$	$S \rightarrow iEtSS' / a$
$E \rightarrow b$	S' → eS / ∈
	$E \rightarrow b$

Example #3

Given CFG	Answer
$A \rightarrow aAB / aBc / aAc$	Step-01:
	$A \rightarrow aA'$
	$A' \rightarrow AB / Bc / Ac$
	Again, this is a grammar with common
	prefixes.
	<u>Step-02:</u>
	$A \rightarrow aA'$
	$A' \rightarrow AD / Bc$
	$D \rightarrow B / c$

Given CFG	Answer
$S \rightarrow bSSaaS / bSSaSb / bSb / a$	<u>Step-01:</u>

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Example #5

Given CFG	Answer
$S \rightarrow aSSbS / aSaSb / abb / b$	<u>Step-01:</u>
	$S \rightarrow aS'/b$
	S' → SSbS / SaSb / bb
	Again, this is a grammar with common prefixes.
	<u>Step-02:</u>
	$S \rightarrow aS'/b$
	$S' \rightarrow SA / bb$
	$A \rightarrow SbS / aSb$

Given CFG	Answer
$S \rightarrow a / ab / abc / abcd$	Step-01:
	$S \rightarrow aS'$
	$S' \rightarrow b / bc / bcd / \in$

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

	Again, this is a grammar with common prefixes.
	<u>Step-02:</u>
	$S \rightarrow aS'$
	$S' \rightarrow bA / \in$
	$A \rightarrow c / cd / \in$
	Again, this is a grammar with common prefixes.
	<u>Step-03:</u>
	$S \rightarrow aS'$
	$S' \rightarrow bA / \in$
	$A \rightarrow cB / \in$
Evample #7	$B \rightarrow d / \in$

Given CFG	Answer
$S \rightarrow aAd / aB$	$S \rightarrow aS'$
$A \rightarrow a / ab$	$S' \rightarrow Ad/B$
$B \rightarrow ccd / ddc$	$A \rightarrow aA'$
	$A' \rightarrow b / \in$
	$B \rightarrow ccd / ddc$