
Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

(Week 7) Lecture 13 & 14

Objectives: Learning objectives of these lectures are

 Students will able to understand:

o What is Left Recursion?

o Which is Direct Left Recursion?

o Which is Indirect Left Recursion?

o How to eliminate Direct Left Recursion?

o How to eliminate Indirect Left Recursion?

 Students will able to understand:

o What is Left Factoring?

o What is Left Factored Grammar?

Text Book & Resources:

1. Compilers Principles Techniques and Tools (2nd Edition) by Alfread V. Aho, Ravi Sethi.

2. Introduction to Computer Theroy By Daniel I.A. Cohen.

Videos Links:
https://youtu.be/PFAEPT8rjdY (Part 1)

https://www.youtube.com/watch?v=xu-keaYj088 (Part 2)

https://www.youtube.com/watch?v=OfH5UvUghlY (Part 3)

https://youtu.be/zD4xJ8HkXmk (Part 4)

https://www.youtube.com/watch?v=COdq7B96KCg (Part 5)

https://youtu.be/PFAEPT8rjdY
https://www.youtube.com/watch?v=xu-keaYj088
https://www.youtube.com/watch?v=OfH5UvUghlY
https://youtu.be/zD4xJ8HkXmk
https://www.youtube.com/watch?v=COdq7B96KCg

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Left Recursion:

A grammar is left recursive if it has a non-terminal A such that there is a derivation

A Ab for some string a. Top-down parsing methods cannot handle left-recursive grammars,

so a transformation is needed to eliminate left recursion.

In this lecture, we will discussed two types of left recursions

 Direct left recursion

 Indirect left recursion

Elimination of left recursion:

We first discussed direct or immediate left recursion, where there is a production of the form

AAb. Here, we study the general case. We showed how the left-recursive pair of

productions AA𝛼 | 𝛽 could be replaced by the non-left-recursive productions:

AA𝛼 | 𝛽

After Elimination

A 𝛽M

M𝛼M | ∈

without changing the strings derivable from A. This rule by itself suffices for

many grammars.

Description of Above Example

 First of identify the left recursion

 For every term which contain left recursion mention as “ 𝛼 “ beside it. E.g AA𝛼 | 𝛽

Here A produces AA𝛼 and A 𝛽 . So first production contain the left recursion. These

productions can be written as A 𝛽M . For every 𝛽 we can write these type of

production with another non-terminal M(any Symbol can be used instead of M).

 For every 𝛼, new M symbol will be used for the production. E.g. M𝛼M | ∈

Example # 1

 A grammar is left recursive if it has a non-terminal A such that there is a derivation A

AX for some string X.

 If production is of the form AAX, it is called immediate left recursion.

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

A → AX |B

Replace it with

 A → BA`

 A` → XA` | ∈

Generic Example # 2

Remove immediate left recursion by following technique.

 A → AX1 | AX2 |………..| AXm | B1 |……………|Bn.

Then replace by

 A → B1A` | B2A1 | ………..| BnA`

 A` → X1A` | X2A1 | ………..| XmA` | ∈

Example # 3

Given CFG After Elimination of Left Recursion

E → E + T E → TE`

E → E – T E → +TE` | ∈

E → T E` → -TE` | ∈

T → T * F T → FT`

T → T/ F T` → *FT` | ∈

T → F T` → /FT` | ∈

F → (E) F → (E)

F → id F → id

Example # 4

Given CFG

A → ABd / Aa / a

B → Be / b

Answer

A → aA’

A’ → BdA’ / aA’ / ∈

B → bB’

B’ → eB’ / ∈

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Example # 5

Given CFG

E → E + E / E x E / a

Answer

E → aA

A → +EA / xEA / ∈

Example # 6

Given CFG

E → E + T / T

T → T x F / F

F → id

Answer

E → TE’

E’ → +TE’ / ∈

T → FT’

T’ → xFT’ / ∈

F → id

Example # 7

Given CFG

S → (L) / a

L → L , S / S

Answer

S → (L) / a

L → SL’

L’ → ,SL’ / ∈

Example # 8

Given CFG

S → S0S1S / 01

Answer

S → 01A

A → 0S1SA / ∈

Example # 9

Given CFG

S → A

A → Ad / Ae / aB / ac

B → bBc / f

Answer

S → A

A → aBA’ / acA’

A’ → dA’ / eA’ / ∈

B → bBc / f

Example # 10

Given CFG

A → AAα / β

Answer

A → βA’

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

A’ → AαA’ / ∈

Indirect Left Recursion

Removing indirect left recursion:

 S -> Aa | b | ∈

 A -> Ac | Sd | ∈ S=> Aa=>Sda

Answer

 S -> Aa | b | ∈

 A -> Ac | Aad | bd |d | ∈ (Replaced S values three times in this production and then apply

direct method)

 S -> Aa | b |∈

 A ->dA` | bdA` | A` (d,bd, ∈ 𝑎𝑟𝑒 takes as 𝛽)

 A` ->cA` | adA` | ∈ (c and ad are takes as 𝛼)

Example # 1

Given CFG

A → Ba / Aa / c

B → Bb / Ab / d

Answer

Step-01:

First let us eliminate left recursion from A →

Ba / Aa / c

Eliminating left recursion from here, we get-

A → BaA’ / cA’

A’ → aA’ / ∈

Now, given grammar becomes-

A → BaA’ / cA’

A’ → aA’ / ∈

B → Bb / Ab / d

Step-02:

Substituting the productions of A in B → Ab,

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

we get the following grammar-

A → BaA’ / cA’

A’ → aA’ / ∈

B → Bb / BaA’b / cA’b / d

Step-03:

Now, eliminating left recursion from the

productions of B, we get the following

grammar-

A → BaA’ / cA’

A’ → aA’ / ∈

B → cA’bB’ / dB’

B’ → bB’ / aA’bB’ / ∈

Example # 2

Given CFG

X → XSb / Sa / b

S → Sb / Xa / a

Answer

Step-01:

First let us eliminate left recursion from X →

XSb / Sa / b

Eliminating left recursion from here, we get-

X → SaX’ / bX’

X’ → SbX’ / ∈

Now, given grammar becomes-

X → SaX’ / bX’

X’ → SbX’ / ∈

S → Sb / Xa / a

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Step-02:

Substituting the productions of X in S → Xa,

we get the following grammar-

X → SaX’ / bX’

X’ → SbX’ / ∈

S → Sb / SaX’a / bX’a / a

Step-03:

Now, eliminating left recursion from the

productions of S, we get the following

grammar-

X → SaX’ / bX’

X’ → SbX’ / ∈

S → bX’aS’ / aS’

S’ → bS’ / aX’aS’ / ∈

Example # 3

Given CFG

S → Aa / b

A → Ac / Sd / ∈

Answer

Step-01:

First let us eliminate left recursion from S →

Aa / b

This is already free from left recursion.

Step-02:

Substituting the productions of S in A → Sd,

we get the following grammar-

S → Aa / b

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

A → Ac / Aad / bd / ∈

Step-03:

Now, eliminating left recursion from the

productions of A, we get the following

grammar-

S → Aa / b

A → bdA’ / A’

A’ → cA’ / adA’ / ∈

Left factoring:

Left factoring is a process by which the grammar with common prefixes is transformed

to make it useful for Top down parsers.

How?

In left factoring,

 We make one production for each common prefixes.

 The common prefix may be a terminal or a non-terminal or a combination of both.

 Rest of the derivation is added by new productions.

The grammar obtained after the process of left factoring is called as Left Factored Grammar.

Example # 1

Given CFG

 A -> XB1| XB2 |…………….XBn |R when choice b/w two

Then alternative is not clear

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

 A -> XA` | R then left- factor it

 A` -> B1 | B2 | B3 |…………..|Bn

Description

In the given CFG, we can see that in the productions X is repeated in every production except R.

Then we can take X as common and for all B’s used A-dash and write the production as

A -> XA` | R

Then write the production for A-dash which shows all the values.

A` -> B1 | B2 | B3 |…………..|Bn

Example #2

Given CFG

S → iEtS / iEtSeS / a

E → b

Answer

S → iEtSS’ / a

S’ → eS / ∈

E → b

Example #3

Given CFG

A → aAB / aBc / aAc

Answer

Step-01:

A → aA’

A’ → AB / Bc / Ac

Again, this is a grammar with common

prefixes.

Step-02:

A → aA’

A’ → AD / Bc

D → B / c

Example #4

Given CFG

S → bSSaaS / bSSaSb / bSb / a

Answer

Step-01:

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

S → bSS’ / a

S’ → SaaS / SaSb / b

Again, this is a grammar with common

prefixes.

Step-02:

S → bSS’ / a

S’ → SaA / b

A → aS / Sb

Example #5

Given CFG

S → aSSbS / aSaSb / abb / b

Answer

Step-01:

S → aS’ / b

S’ → SSbS / SaSb / bb

Again, this is a grammar with common

prefixes.

Step-02:

S → aS’ / b

S’ → SA / bb

A → SbS / aSb

Example #6

Given CFG

S → a / ab / abc / abcd

Answer

Step-01:

S → aS’

S’ → b / bc / bcd / ∈

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Again, this is a grammar with common

prefixes.

Step-02:

S → aS’

S’ → bA / ∈

A → c / cd / ∈

Again, this is a grammar with common

prefixes.

Step-03:

S → aS’

S’ → bA / ∈

A → cB / ∈

B → d / ∈

Example #7

Given CFG

S → aAd / aB

A → a / ab

B → ccd / ddc

Answer

S → aS’

S’ → Ad / B

A → aA’

A’ → b / ∈

B → ccd / ddc

