Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

(Week 7) Lecture 13 & 14

Objectives: Learning objectives of these lectures are

e Students will able to understand:

What is Left Recursion?

Which is Direct Left Recursion?

Which is Indirect Left Recursion?

How to eliminate Direct Left Recursion?
How to eliminate Indirect Left Recursion?
e Students will able to understand:

o What is Left Factoring?

O O O O O

o What is Left Factored Grammar?

Text Book & Resources:

1. Compilers Principles Techniques and Tools (2nd Edition) by Alfread V. Aho, Ravi Sethi.
2. Introduction to Computer Theroy By Daniel I.A. Cohen.

Videos Links:

https://youtu.be/PFAEPT8ridY (Part 1)
https://www.youtube.com/watch?v=xu-keaYj088 (Part 2)
https://www.youtube.com/watch?v=0fH5UvUghlY (Part 3)
https://youtu.be/zD4xJ8HKXmk (Part 4)

https://www.youtube.com/watch?v=C0Odg7B96KCqg (Part 5)

https://youtu.be/PFAEPT8rjdY
https://www.youtube.com/watch?v=xu-keaYj088
https://www.youtube.com/watch?v=OfH5UvUghlY
https://youtu.be/zD4xJ8HkXmk
https://www.youtube.com/watch?v=COdq7B96KCg

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Left Recursion:

A grammar is left recursive if it has a non-terminal A such that there is a derivation
A >Ab for some string a. Top-down parsing methods cannot handle left-recursive grammars,
so a transformation is needed to eliminate left recursion.

In this lecture, we will discussed two types of left recursions

e Direct left recursion
e Indirect left recursion

Elimination of left recursion:

We first discussed direct or immediate left recursion, where there is a production of the form
A->Ab. Here, we study the general case. We showed how the left-recursive pair of
productions A>Aa | 5 could be replaced by the non-left-recursive productions:

A>Aa | B

After Elimination

A BM

M->aM | €

without changing the strings derivable from A. This rule by itself suffices for
many grammars.

Description of Above Example

e First of identify the left recursion

e For every term which contain left recursion mention as “ a “ beside it. E.g A>Aa | B
Here A produces A>Aa and A-> [. So first production contain the left recursion. These
productions can be written as A-> M . For every 8 we can write these type of
production with another non-terminal M(any Symbol can be used instead of M).

e Forevery a, new M symbol will be used for the production. E.g. M>aM | €

Example #1

= A grammar is left recursive if it has a non-terminal A such that there is a derivation A—>
AX for some string X.
= If production is of the form A>AX, it is called immediate left recursion.

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

A— AX|B
Replace it with
A — BA®
A — XA'|€
Generic Example # 2
Remove immediate left recursion by following technique.
A— AXi|AX]oeenn |AXm| Bifoovevinennnnns IBp.

Then replace by

A— BiA |BAL| ... | BLA"
A 5 XA | XoAL| e, | XA | €
Example # 3
Given CFG After Elimination of Left Recursion
E—- E+T E— TE
E>E-T E— +TE | €
E>T E'— -TE | €
T—> T*F T— FT
T— T/F T > *FT | €
T—> F T - [FT | €
F— (E) F— (E)
F— id F—id
Example # 4
Given CFG Answer
A— ABd/Aa/a A —aA’
B—Be/b A’ —>BdA’/aA’ / €

B — bB’
B —eB’ /€

Dr. Naseer Ahmed Sajid

Compiler Construction (CS-636)

email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Example # 5
Given CFG Answer
E—-E+E/ExE/a E — aA
A —+EA/XEA /€
Example # 6
Given CFG Answer
E—-E+T/T E—-TFE
T—>TxF/F E*—+TE’ /€
F—id T—FT’
T —-xFT’/ €
F—id
Example # 7
Given CFG Answer
S—(L)/a S—(L)/a
L—-L,S/S L—-SL’
L’— . SL’/€
Example # 8
Given CFG Answer
S — S0S1S/01 S—01A
A —0SISA/€
Example #9
Given CFG Answer
S—A S— A
A — Ad/Ae/aB/ac A — aBA’ /acA’
B—bBc/f A’ —dA’/eA’ /e
B—bBc/f
Example # 10
Given CFG Answer
A— AAa/pB A — BA’

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

A’ — AaA’/ €

Indirect Left Recursion
Removing indirect left recursion:

S->Aa|b|e

A->Ac|Sd]| € S=> Aa=>Sda
Answer

S->Aal|b|e

A->Ac|Aad|bd|d|€ (Replaced S values three times in this production and then apply
direct method)

S->Aa|b|e
A ->dA’ |bdA™ | A (d,bd, € are takes as B)
A ->CA’ |adA’ | € (c and ad are takes as «)
Example # 1
Given CFG Answer
A —Ba/Aa/c Step-01:
B Bb/Ab/d First let us eliminate left recursion from A —

Ba/Aa/c

Eliminating left recursion from here, we get-
A — BaA’ /cA’
A’ —aA’ /€

Now, given grammar becomes-
A — BaA’ /cA’

A’ —aA’/ €

B—Bb/Ab/d

Step-02:

Substituting the productions of A in B — Ab,

Dr. Naseer Ahmed Sajid

Compiler Construction (CS-636)

email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

we get the following grammar-
A — BaA’ /cA’

A’ —aA’ /€

B — Bb/BaA’b/cA’b/d

Step-03:

Now, eliminating left recursion from the
productions of B, we get the following
grammar-

A — BaA’ /cA’

A’ —aA’ /€

B — cA’bB’ / dB’

B> —bB’/aA’bB’/ €

Example # 2

Given CFG Answer
X — XSb/Sa/b Step-01:
S—Sb/Xala

First let us eliminate left recursion from X —

XSb/Salb

Eliminating left recursion from here, we get-
X — SaX’ / bX’
X —SbX’/ €

Now, given grammar becomes-
X — SaX’ / bX’

X — SbX’/ €
S—Sb/Xa/a

Dr. Naseer Ahmed Sajid

Compiler Construction (CS-636)

email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Step-02:

Substituting the productions of X in S — Xa,
we get the following grammar-

X — SaX’ / bX’
X’ —>SbX’ /€
S— Sb/SaX’a/bX’a/a

Step-03:

Now, eliminating left recursion from the
productions of S, we get the following
grammar-

X — SaX’ /bX’

X —SbX’ /€

S — bX’aS’ /aS’

S —bS’/aX’aS’/ €

Example # 3

Given CFG Answer
S—Aa/b Step-01:
A —> Ac/Sd/€

First let us eliminate left recursion from S —
Aalb

This is already free from left recursion.

Step-02:

Substituting the productions of S in A — Sd,
we get the following grammar-

S—Aa/b

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

A — Ac/Aad/bd/ €

Step-03:

Now, eliminating left recursion from the
productions of A, we get the following
grammar-

S—Aa/b
A —DbdA’ /A’
A’ —cA’/adA’ / €

Left factoring:

Left factoring is a process by which the grammar with common prefixes is transformed

to make it useful for Top down parsers.

How?
In left factoring,
e We make one production for each common prefixes.

« The common prefix may be a terminal or a non-terminal or a combination of both.
e Rest of the derivation is added by new productions.

The grammar obtained after the process of left factoring is called as Left Factored Grammar.

Example # 1
Left Factoring
>
Grammar
with Left Factored Grammar
common prefixes
Given CFG
A->XB1| XBz|.vveiiannnnn. XBn IR when choice b/w two

Then alternative is not clear

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

A->XA|R then left- factor it
A ->B;|B2|Bsl.ccuen.... |Bn
Description

In the given CFG, we can see that in the productions X is repeated in every production except R.
Then we can take X as common and for all B’s used A-dash and write the production as
A->XA'|R

Then write the production for A-dash which shows all the values.

A ->B1|By|Bs|ceuinnnnn. B
Example #2
Given CFG Answer
S — iEtS /iEtSeS / a S—iEtSS’ /a
E—b S>—eS/€
E—b
Example #3
Given CFG Answer
A — aAB/aBc/aAc Step-01:
A —aA’
A’ — AB/Bc/Ac
Again, this is a grammar with common
prefixes.
Step-02:
A —aA’
A’ — AD/Bc
D—-B/c
Example #4
Given CFG Answer
S — bSSaaS /bSSaSb /bSb/ a Step-01:

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

S—bSS’/a
S> — SaaS/SaSb/b

Again, this is a grammar with common
prefixes.

Step-02:

S—bSS’/a
S>—SaA/b
A —aS/Sb

Example #5

Given CFG Answer
S — aSSbS /aSaSb/abb/b Step-01:

S—aS’ /b
S” — SSbS / SaSb / bb

Again, this is a grammar with common
prefixes.

Step-02:

S—aS’ /b
S”— SA/bb
A — SbS/aSb

Example #6

Given CFG Answer
S — a/ab/abc/abed Step-01:

S — aS’
S>—b/bc/becd/ €

Dr. Naseer Ahmed Sajid

Compiler Construction (CS-636)

email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Again, this is a grammar with common
prefixes.

Step-02:

S —aS’
S’ —>bA/E
A—c/cd/E

Again, this is a grammar with common
prefixes.

Step-03:

S —aS’
S —>bA/E
A—cB/€
B—d/e€

Example #7

Given CFG
S —aAd/aB

A —a/ab
B — ccd / ddc

Answer
S —aS$’

S—Ad/B
A —aA’
A’—b/E€
B — ced / ddc

