Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

(Week 10) Lecture 19 & 20

Objectives: Learning objectives of these lectures are

Students will able to understand:
e What is Bottom-Up Parser?
e What are types of Bottom-Up Parser?
e SLR(1) Parser Steps

1.

No gk~ owd

Number the Production

Augment the given grammar (Augmented Grammar)
Find the Follow Set of Non-Terminals in given CFG
Draw the Canonical Collection

Create the Parsing Table

Stack Implementation

Draw Parse Tree

Text Book & Resources:

Compilers Principles Techniques and Tools (2nd Edition) by Alfread V. Aho, Ravi Sethi.

Videos Link:
https://youtu.be/m1mkjiuUm3A (Part 1)

https://youtu.be/48S73DRA8GU (Part 2)

https://youtu.be/Ov0gq84nTQdA (Part 3)

https://youtu.be/gEZIRmMpgX9w (Part 4)

https://youtu.be/MeP_OaGHI6Y (Part 5)

https://youtu.be/-hyt3uBv6wl (Part 6)

https://youtu.be/Dn95j5rAJxc (Part 7)

https://youtu.be/ATEWmM3Kr3do (Part 8)

https://youtu.be/m1mkjiUUm3A
https://youtu.be/48S73DRd8GU
https://youtu.be/0v0q84nTQdA
https://youtu.be/gEZIRmpgX9w
https://youtu.be/MeP_OaGHl6Y
https://youtu.be/-hyt3uBv6wI
https://youtu.be/Dn95j5rAJxc
https://youtu.be/ATEwm3Kr3do

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Bottom Up or Shift Reduce Parsers

In the last week, we had discussed the Bottom Up Parsers and also discussed the following types
of parsers. From these parsers we had discussed LR(0) Parser and in this week we will discuss
the simple LR or SLR(1) Parser.

Classification (Types) of bottom up parsers

Bottom up parsers

LR Parsers

SLR(1) LALR CLR

simple LR LookAhead LR Canonical LR

SLR (1) Parsing

SLR (1) refers to simple LR Parsing. It is same as LR(0) parsing. The only difference is in the
parsing table. To construct SLR (1) parsing table, we use canonical collection of LR (0) item.

In the SLR (1) parsing, we place the reduce move only in the follow set of left hand side non-
terminals.

SLR Parser

We will first consider SLR(1) where the S stands for simple. SLR(1) parsers use the
same LR(0) configurating sets and have the same table structure and parser operation,
so everything you've already learned about LR(0) applies here. The difference comes in
assigning table actions, where we are going to use one token of lookahead to help
arbitrate among the conflicts. If we think back to the kind of conflicts we encountered in
LR(0) parsing, it was the reduce actions that cause us grief. A state in an LR(0) parser
can have at most one reduce action and cannot have both shift and reduce instructions.
Since a reduce is indicated for any completed item, this dictates that each completed
item must be in a state by itself. But let's revisit the assumption that if the item is
complete, the parser must choose to reduce. Is that always appropriate? If we peeked at
the next upcoming token, it may tell us something that invalidates that reduction. If the
sequence on top of the stack could be reduced to the non-terminal A, what tokens do we
expect to find as the next input? What tokens would tell us that the reduction is not
appropriate? Perhaps Follow(A) could be useful here!

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

The simple improvement that SLR(1) makes on the basic LR(0) parser is to reduce only if
the next input token is a member of the follow set of the non-terminal being reduced.
When filling in the table, we don't assume a reduce on all inputs as we did in LR(0), we
selectively choose the reduction only when the next input symbols in a member of the
follow set. To be more precise, here is the algorithm for SLR(1) table construction
(note
all steps are the same as for LR(0) table construction except for 2a).
1. Construct F = {I0, 11, ... In}, the collection of LR(0) configuration sets for G'.
2. State i is determined from li. The parsing actions for the state are determined as
follows:
a) If A > ueisin li then set Action[i,a] to reduce A —u for all a in Follow(A) (A is
not S').
b) If S' > Seis in li then set Action[i,$] to accept.
c) If A - ueav isin li and successor(li, a) = 1j, then set Action[i,a] to shift j (a
must be a terminal).
3. The goto transitions for state i are constructed for all non-terminals A using the
rule: If successor(li, A) = 1j, then Goto [i, A] =].
4. All entries not defined by rules 2 and 3 are errors.
5. The initial state is the one constructed from the configurating set containing
S' > S,

In the SLR(1) parser, it is allowable for there to be both shift and reduce items in the
same state as well as multiple reduce items. The SLR(1) parser will be able to determine
which action to take as long as the follow sets are disjoint.

SLR(1) Grammars

A grammar is SLR(2) if the following two conditions hold for each configurating set:

1. For any item A - uexv in the set, with terminal x, there is no complete item B >

we in that set with x in Follow(B). In the tables, this translates no shift reduce

conflict on any state. This means the successor function for x from that set either

shifts to a new state or reduces, but not both.

2. For any two complete items A = ue and B - ve in the set, the follow sets must

be disjoint, e.g. Follow(A) N Follow(B) is empty. This translates to no reduce-reduce
conflict on any state. If more than one non-terminal could be reduced from this set,

it must be possible to uniquely determine which using only one token of

look ahead.

All LR(0) grammars are SLR(1) but the reverse is not true, as the two extensions to our
expression grammar demonstrated. The addition of just one token of lookahead and use
of the follow set greatly expands the class of grammars that can be parsed without
conflict.

SLR(1) Limitations

The SLR(2) technique still leaves something to be desired, because we are not using all
the information that we have at our disposal. When we have a completed configuration
(i.e., dot at the end) such as X - ue, we know that this corresponds to a situation in
which we have u as a handle on top of the stack which we then can reduce, i.e., replacing
u by X. We allow such a reduction whenever the next symbol is in Follow(X). However, it

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

may be that we should not reduce for every symbol in Follow(X), because the symbols
below u on the stack preclude u being a handle for reduction in this case. In other
words, SLR(1) states only tell us about the sequence on top of the stack, not what is
below it on the stack. We may need to divide an SLR(1) state into separate states to
differentiate the possible means by which that sequence has appeared on the stack. By
carrying more information in the state, it will allow us to rule out these invalid
reductions.

SLR(1) Parser Steps
1. Number the Production

2. Augment the given grammar (Augmented Grammar)
3. Find Follow Sets of Non-Terminals
4. Draw the Canonical Collection(DFD)
5. Create the Parsing Table
6. Stack Implementation
7. Draw Parse Tree
Example # 1
Given CFG
E>E+T|T
T>T*F|F
F->id

In this example we will perform all above steps to check whether the given grammar is SLR(1)
conflict or not.
Step 1: Number the Production

1. E2>E+T

E>T
TOT*F
T>F
F-id

a s~ wd

Step 2: Augmented CFG

S’>E
E2>E+T
E->T
T>T*F
T>F
F->id

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010
Step 3: Find the Follow Set of Non-Terminals
Non-Terminals Follow Set
S’ {$}
E {$,+}
T {$.+*}
F {$,+*}

Step 4: Canonical Collection (DFD)

Step 5: Parsing Table (R1: E2>E+T,R2:E>T,R3: T2>T*F, R4: T>F, R5: F>id)

States Action Go to

id + * $ E T F
In 54 1 2 3
I Ss Accept
Jb Fa Se R2
Is R4 E4 R4
14 Es E5 R3
Is 54 7 3
Is 54 B
I Rl 56 R1
Iz E3 R3 R3

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid

email id: naseer@biit.edu.pk

Step 6: Stack Implementation (String: id+id*id)

Stack Input Action

$0 id+idxidg | Shiftid>s4

$0id4 +id*idg | Reduction (F>id) (R5)
$O0F3 +id*idg | Reduction (T>F) (R4)
$0T2 +id*igg | Reduction (E=>T) (R2)
$OE1 +id*idg | Shift +>S5

$0E1+5 id*id$ Shift id>S4

$0E1+5id4 *id$ Reduction (F—>id) (R5)
$0E1+5F3 *id$ Reduction (T>F) (R4)
$OE1+5T7 *id$ Shift *>S6

$OE1+5T7*6 id$ Shift id>S4
$OE1+5T7*6id4 | g Reduction (F—>id) (R5)
$OE1+5T7*6F8 | ¢ Reduction (T>T*F) (R3)
$OE1+5T7 $ Reduction (EE+T) (R1)
$0E1 $ Accept

Step 7: Draw Syntax Tree

Whatsapp# 0346-5100010

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Example # 2
Consider the grammar
S 2AA

A->aAl|b

In this example we will perform all above steps to check whether the given grammar is SLR(1)
conflict or not.
Step 1: Number the Production

1. S2AA

2. A2 aA

3. A=> b

Step 2: Augmented CFG

S’>S

S 2AA

A > aA

A->Db

Step 3: Find the Follow Set of Non-Terminals

Non-Terminals Follow Set

S {$}
S {$}
A {$,a,b}

Step 4: Canonical Collection

. GEes > Ceeaa
S’%-S 3 S%A-A
S>> _AA A A—>.aA
A—>.aA A—.b
A—>.b 7
b - C A>aa. O
5 N A A
A—>b. A—>a.A

A— .aA <
A—=>.b 0

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid

email id: naseer@biit.edu.pk

Whatsapp# 0346-5100010

Step 5: Parsing Table (R1: S>AA |, R2: A—->aA , R3. A>b)
States Action Part Goto Part
a b $ S A
1 sS4 S5 2 3
2 Accept
3 S4 S5 6
4 S4 S5
5 R3 R3 R3
6 R1
7 R2 R2 R2
Step 6: Stack Implementation (String: abab)
Stack Input Action
$1 abab$ Shift a=>S4
$1a4 bab$ Shift b>S5
$1adb5 ab$ Reduction (A—>b) (R3)
$1adA7 ab$ Reduction (A—>aA) (R2)
$1A3 ab$ Shift a>S4
$1A3a4 b$ Shift b>S5
$1A3a4b5 $ Reduction (A=>b) (R3)
$1A3a4AT7 $ Reduction (A>aA) (R2)
$1A3A6 $ Reduction (S>AA) (R1)
$1S2 $ Accept
Step 7: Draw Syntax Tree
s
/\
A
D
: L

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Example # 3
In this example we will perform all above steps to check whether the given grammar is SLR(1)
conflict or not.
Given CFG:
E->E+(E)
E->id
Given String:
id+(id)
Step 1: Number the Production
1. EE+(E)

2. E~>id
Step 2: Augmented CFG
E’>E
E->E+(E)
E->id

Step 3: Find the Follow Set of Non-Terminals

Non-Terminals Follow Set

E’ {$}

E $.+)}

Step 4: Canonical Collection

E— E+(.E)
E— .E+(E)
E—>.id

E>E+(E.)
E—>E.+(E)

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Step 5: Parsing Table (R1: E2>E+(E) , R2: E->id)

States Action Part Goto Part
+ (Id) $ E

1 S3 2

2 S4 Accept

3 R2 R2 R2

4 S5

5 sS4 S3 6

6 S4 S7

7 R1 R1 R1

Step 6:Stack Implementation (String: id+(id))

Stack Input Action

$1 id+(id)$ Shift id>S3

$1id3 +(id)$ Reduction (E~>id) (R2)
$1E2 +(id)$ Shift +>S4

$1E2+4 (id)$ Shift (>S5

$1E2+4(5 id)$ Shift id>S3

$1E2+4(5id3)$ Reduction E->id (R2)
$1E2+4(5E6)$ Shift)>S7

$1E2+4(5E6)7 $ Reduction E>E+(E) (R1)
$1E2 $ Accept

Step 7: Draw Syntax Tree

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk
Example # 4
Given Grammar
S=>(9) | €
Step # 1: Number the Production
1. S=>(9)
2. S2€e
Step # 2: Augmented Grammar
S’>S
S=2>(S)
S—>e€
Step 3: Find the Follow Set of Non-Terminals
Non-Terminals Follow Set
S’ {$}
S {$.)}

Step 4: Canonical Collection

Whatsapp# 0346-5100010

Note: S=.€ = S->. so there is to need to check next symbol

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Step 5: Parsing Table (R1: S>(S) , R2: S2>€)

States Action Part Goto Part
() $ S

1 S3 |R2 | R2 2

2 Accept

3 S3 |R2 | R2 4

4 S5

5 Rl |R1

Step 6:Stack Implementation (String: ())

Stack Input Action

$1 0O$ Shift (=>S3

$1(3 15 Reduction (S>€ (R2)
$1(354)$ Shift)>S5

$1(354)5 | ¢ Reduction (S=>(S) (R1)
$1S2 $ Accept

A
Step 7: Draw Syntax Tr/ee/

I

(S)

Example # 5

Given Grammar

S—> SS+|SS*| a

Step # 1. Number the Production
1. S>SS+

2. S—> SS*
3. S—>a

Step # 2: Augmented Grammar
S’>S

S>SS+

S-> SS*

S—>a

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Step 3: Find the Follow Set of Non-Terminals

Non-Terminals Follow Set
S’ {$}
S {$,a+*}

Step 4: Canonical Collection of LR(0) Items

2

Step 5: Parsing Table (R1: S>SS+ |, R2:S>SS* , R3:S—>a)

GoTo
States Action Part Part
+ * a $ S
1 S3 2
2 S3 Accept 4
3 R3 R3 R3 R3
4 S5 S6 S3 4
5 R1 R1 R1 R1
6 R2 R2 R2 R2

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Step6: Stack Implementation (String: aa+)

Stack Input Action
$1 aa+$ Shift a>S3
$1a3 a+$ Reduction R3(S—>a)
$1S2 a+$ Shift a>S3
$1S2a3 +$ Reduction R3(S—>a)
$1S254 +$ Shift +->S5
$1S2S4+5 $ Reduction R1(S—>SS+)
S1S2 $ Accept
Step 7: Draw Syntax Tree
s
S S +
a a

Example # 6
Given Grammar
S>(L)]|a
L>LS|S
Step # 1: Number the Production
1. S=> (L)
2. S>> a
3. L=>L;S
4. L=> S

Step # 2: Augmented Grammar
S’>S

S=> (L)

S—>a

L->L,S

L>S

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Step 3: Find the Follow Set of Non-Terminals

Non-Terminals Follow Set
S’ {$}
S {8). .}
L 0.}

Step 4: Canonical Collection

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid

email id: naseer@biit.edu.pk

Whatsapp# 0346-5100010

Step 5: Parsing Table (R1: S>(L) , R2:S—>a,R3:L>L,S,R4:L>S)

States Terminal Part Goto Part
() |a], $ |S L
1 S3 S4
2
Accept
3 S3 S4 5
6
4 R2 R2 R2
5 S7 S8
6 R4 R4
7 R1 R1| R1
8 S3 S4
9
9 R3 R3

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Step 6:Stack Implementation (String: (a,a))

Stack Input Action

$1 @,a$ Shift (>33

$1(3 a,a)$ Shift a—>S4

$1(3a4 ,a)$ Reduction R2(S—>a)
$1(3S6 a)$ Reduction R4(L—>S)
$1(3L5 a)$ Shift , >S8
$1(3L5,8 a)$ Shift a >S4
$1(3L5,8a4)$ Reduction R2(S—>a)
$1(3L5,859)$ Reduction R3(L->L,S)
$1(3L5)$ shift) >S7
$1(3L5)7 $ Reduction R1(S—>(L)
$1S2 $ Accept

Step 7: Draw Syntax Tree

