
Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Lecture-25-26 Page 1 of 8

(Week 13) Lecture 25 & 26

Objectives: Learning objectives of these lectures are

Students will able to understand:

 What is Syntax Directed Translation (SDT)?

 What are Semantic Rules?

 What are attributed used in SDT?

o Synthesized Attributes

o Inherited Attributes

Text Book & Resources:

Compilers Principles Techniques and Tools (2nd Edition) by Alfread V. Aho, Ravi Sethi.

Videos Links:

https://youtu.be/PSCRPkdHCaw (Part 1)

https://youtu.be/Kf9CYlBYwWs (Part 2)

https://youtu.be/p4Gina2glE8 (Part 3)

https://youtu.be/jUvhJXg_vmM (Part 4)

https://youtu.be/uOjd5t1m-84 (Part 5)

https://youtu.be/PSCRPkdHCaw
https://youtu.be/Kf9CYlBYwWs
https://youtu.be/p4Gina2glE8
https://youtu.be/jUvhJXg_vmM
https://youtu.be/uOjd5t1m-84

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Lecture-25-26 Page 2 of 8

Summery Week#12 Lectures
In the last week, we had discussed the Bottom Up Parsers and also discussed the following types

of parsers. From these parsers we had discussed LALR(1) Parser and its steps with different

examples.

Classification (Types) of bottom up parsers

In this week, we will discuss the Syntax Directed Translation (SDT). The detail description of

SDT is given below:

Syntax Directed Translation (SDT)

Background

Parser uses a CFG (Context-free-Grammar) to validate the input string and produce output for

next phase of the compiler. Output could be either a parse tree or abstract syntax tree. Now to

interleave semantic analysis with syntax analysis phase of the compiler, we use Syntax Directed

Translation.

Definition
Syntax Directed Translation are augmented rules to the grammar that facilitate semantic analysis.

Grammar + Semantic Rules = SDT

SDT involves passing information bottom-up and/or top-down the parse tree in form of attributes

attached to the nodes. Syntax directed translation rules use

1) lexical values of nodes,

2) constants &

3) attributes associated to the non-terminals in their definitions.

The general approach to Syntax-Directed Translation is to construct a parse tree or syntax tree

and compute the values of attributes at the nodes of the tree by visiting them in some order. In

many cases, translation can be done during parsing without building an explicit tree.

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Lecture-25-26 Page 3 of 8

Example# 1

EE+T | T

TT*F | F

Fdigit

This is a grammar to syntactically validate an expression having additions and multiplications in

it. Now, to carry out semantic analysis we will augment SDT rules to this grammar, in order to

pass some information up the parse tree and check for semantic errors, if any. In this example we

will focus on evaluation of the given expression, as we don’t have any semantic assertions to

check in this very basic example.

S# Production Semantic Rules

1 EE+T { E.Val = E.Val + T.Val }

2 E T { E.Val = T.Val }

3 TT*F { T.Val = T.Val * F.Val }

4 TF { T.Val = F.Val }

5 Fdigit { F.Val = Lexval }

For understanding translation rules further, we take the first SDT augmented to [E -> E+T]

production rule. The translation rule in consideration has val as attribute for both the non-

terminals E & T. Right hand side of the translation rule corresponds to attribute values of right

side nodes of the production rule and vice-versa. Generalizing, SDT are augmented rules to a

CFG that associate 1) set of attributes to every node of the grammar and 2) set of translation

rules to every production rule using attributes, constants and lexical values.

Let’s take a string to see how semantic analysis happens – S = 2+3*4. Parse tree corresponding

to S would be

To evaluate translation rules, we can employ one depth first search traversal on the parse tree.

This is possible only because SDT rules don’t impose any specific order on evaluation until

children attributes are computed before parents for a grammar having all synthesized attributes.

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Lecture-25-26 Page 4 of 8

Otherwise, we would have to figure out the best suited plan to traverse through the parse tree and

evaluate all the attributes in one or more traversals. For better understanding, we will move

bottom up in left to right fashion for computing translation rules of our example.

Above diagram shows how semantic analysis could happen. The flow of information happens

bottom-up and all the children attributes are computed before parents, as discussed above. Right

hand side nodes are sometimes annotated with subscript 1 to distinguish between children and

parent.

Additional Information

Synthesized Attributes are such attributes that depend only on the attribute values of children

nodes.

Thus [E -> E+T { E.val = E.val + T.val }] has a synthesized attribute val corresponding to node

E. If all the semantic attributes in an augmented grammar are synthesized, one depth first search

traversal in any order is sufficient for semantic analysis phase.

Inherited Attributes are such attributes that depend on parent and/or siblings’ attributes.

Thus [Ep -> E+T { Ep.val = E.val + T.val, T.val = Ep.val }], where E & Ep are same

production symbols annotated to differentiate between parent and child, has an inherited attribute

val corresponding to node T.

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Lecture-25-26 Page 5 of 8

Example# 2

 Given CFG

SE

EE+E | E*E | (E) | I

II digit

I digit

S# Production Semantic Rules

1 SE $ { Print E.Val }

2 EE + E { E.Val = E.Val + E.Val }

3 EE * E { E.Val = E.Val * E.Val }

4 E(E) { E.Val = E.Val }

5 E I { E.Val = I.Val }

6 I I digit { I.Val = 10 * I.Val + LexVal }

7 I digit { I.Val = LexVal }

Parse tree for SDT: 23*5+4

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Lecture-25-26 Page 6 of 8

Example # 3

Write semantic rules which convert binary number to decimal number for the following CFG.

Given CFG

 S0S | 1S | 0 | 1

S# Production Semantic Rules

1 S0S S.DVal= S.Dval + 0*2
S.bcount

 , S.Bcount= S.bcount +1

2 S1S S.DVal= S.Dval + 1*2
S.bcount

 , S.Bcount= S.bcount +1

3 S0 S.DVal=0 , S.Bcount=1

4 S1 S.DVal=1 , S.Bcount=1

Parse tree for SDT: (10101)2=(21)10

 (10101)2 =1*2
4
+0*2

3
+1*2

2
+0*2

1
+1*2

0
 =16+0+4+0+1=(21)10

Example # 4

Construct a syntax-directed translation (SDT) scheme that translates arithmetic expressions from

infix notation into postfix notation.

Given CFG

 EE-T | E+T |T

 TT*G | T/G |G

 Gid

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Lecture-25-26 Page 7 of 8

S# Production Semantic Rules

1 EE-T Print -

2 EE+T Print +

3 ET { }

4 TT*G Print *

5 TT/G Print /

6 TG { }

7
Gid Print id

Parse Tree (Infix Notation = 2*3 – 4 / 5 +6)

Parse Tree: (Postfix Notation = 2 3 * 4 5 / – 6 +)

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Lecture-25-26 Page 8 of 8

Example # 5

Construct a syntax-directed translation (SDT) scheme that translates arithmetic expressions from

infix notation into postfix notation.

Given CFG

 Expr Expr – Term | Expr +Term | Term

 TermID

S# Production Rules Semantic Rules

1 Expr Expr –Term Print -

2 Expr  Expr +Term Print +

3 ETerm { }

4 TermID Print ID.sval

