Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk

(Week 13) Lecture 25 & 26

Objectives: Learning objectives of these lectures are

Students will able to understand:

e What is Syntax Directed Translation (SDT)?

e What are Semantic Rules?

e What are attributed used in SDT?
o Synthesized Attributes
o Inherited Attributes

Text Book & Resources:

Whatsapp# 0346-5100010

Compilers Principles Techniques and Tools (2nd Edition) by Alfread V. Aho, Ravi Sethi.

Videos Links:

https://youtu.be/PSCRPkdHCaw
https://youtu.be/KfOCYIBYWWs
https://youtu.be/p4Gina2glE8
https://youtu.be/jUvhJXg_vmM
https://youtu.be/uOjd5t1m-84

Lecture-25-26

(Part 1)
(Part 2)
(Part 3)
(Part 4)
(Part 5)

Page 1 of 8

https://youtu.be/PSCRPkdHCaw
https://youtu.be/Kf9CYlBYwWs
https://youtu.be/p4Gina2glE8
https://youtu.be/jUvhJXg_vmM
https://youtu.be/uOjd5t1m-84

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Summery Week#12 Lectures
In the last week, we had discussed the Bottom Up Parsers and also discussed the following types
of parsers. From these parsers we had discussed LALR(1) Parser and its steps with different
examples.

Classification (Types) of bottom up parsers

Bottom up parsers

LR Parsers

N
LALR

LookAhead LR

SLR(1) CLR

simple LR

Canonical LR

In this week, we will discuss the Syntax Directed Translation (SDT). The detail description of
SDT is given below:

Syntax Directed Translation (SDT)

Background

Parser uses a CFG (Context-free-Grammar) to validate the input string and produce output for
next phase of the compiler. Output could be either a parse tree or abstract syntax tree. Now to
interleave semantic analysis with syntax analysis phase of the compiler, we use Syntax Directed
Translation.

Definition
Syntax Directed Translation are augmented rules to the grammar that facilitate semantic analysis.
Grammar + Semantic Rules = SDT
SDT involves passing information bottom-up and/or top-down the parse tree in form of attributes
attached to the nodes. Syntax directed translation rules use

1) lexical values of nodes,

2) constants &

3) attributes associated to the non-terminals in their definitions.
The general approach to Syntax-Directed Translation is to construct a parse tree or syntax tree
and compute the values of attributes at the nodes of the tree by visiting them in some order. In
many cases, translation can be done during parsing without building an explicit tree.

Lecture-25-26 Page 2 of 8

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Example# 1
E2E+T|T
T>T*F|F
F->digit

This is a grammar to syntactically validate an expression having additions and multiplications in
it. Now, to carry out semantic analysis we will augment SDT rules to this grammar, in order to
pass some information up the parse tree and check for semantic errors, if any. In this example we
will focus on evaluation of the given expression, as we don’t have any semantic assertions to
check in this very basic example.

S# | Production Semantic Rules

1 | EPE+T { E.val=E.val +T.vVal }
o |E>T { EVal=T.Val }

3 | T>T*F { TVval=T.\Val *F.Val }
4 |TOF { T.Val=F.val }

5 | F>digit { F.Val = Lexval }

For understanding translation rules further, we take the first SDT augmented to [E -> E+T]
production rule. The translation rule in consideration has val as attribute for both the non-
terminals E & T. Right hand side of the translation rule corresponds to attribute values of right
side nodes of the production rule and vice-versa. Generalizing, SDT are augmented rules to a
CFG that associate 1) set of attributes to every node of the grammar and 2) set of translation
rules to every production rule using attributes, constants and lexical values.

Let’s take a string to see how semantic analysis happens — S = 2+3*4. Parse tree corresponding
to S would be

P
Lo |
|

To evaluate translation rules, we can employ one depth first search traversal on the parse tree.
This is possible only because SDT rules don’t impose any specific order on evaluation until
children attributes are computed before parents for a grammar having all synthesized attributes.

Lecture-25-26 Page 3 0f 8

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010
Otherwise, we would have to figure out the best suited plan to traverse through the parse tree and

evaluate all the attributes in one or more traversals. For better understanding, we will move
bottom up in left to right fashion for computing translation rules of our example.

E.value= E.vaiue + T.value = 2+ 12 = 14

/'/ e ~ \\
//; 50r” ~ .
" e R BN
~ = G N
/ /—/ \'\ \\ T.value= Tvalue * Fvalue = 2*4 = 12
s P> 2
E.value =2 = S /
—//v
=54
,/
Tvalue= o
e T value=
¥ e T Fvalue = 3

Fvalue = 4

\ ®, -

Above diagram shows how semantic analysis could happen. The flow of information happens
bottom-up and all the children attributes are computed before parents, as discussed above. Right
hand side nodes are sometimes annotated with subscript 1 to distinguish between children and
parent.

Additional Information

Synthesized Attributes are such attributes that depend only on the attribute values of children
nodes.

Thus [E -> E+T { E.val = E.val + T.val }] has a synthesized attribute val corresponding to node
E. If all the semantic attributes in an augmented grammar are synthesized, one depth first search
traversal in any order is sufficient for semantic analysis phase.

Inherited Attributes are such attributes that depend on parent and/or siblings’ attributes.
Thus [Ep -> E+T { Ep.val = E.val + T.val, T.val = Ep.val }], where E & Ep are same
production symbols annotated to differentiate between parent and child, has an inherited attribute
val corresponding to node T.

Lecture-25-26 Page 4 of 8

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010
Example# 2
Given CFG
S2>E
E2>E+E|E*E|(E) | |
=21 digit
1> digit
S# | Production Semantic Rules
1 |SPES$ { PrintE.Val }
o |E2E+E { Eval=E.vVal + E.Val }
3 |E2E*E { E.Val=E.Val *E.Val }
4 | E2(E) { E\Val=E.vVal }
5 [E>I { EVal=1Val}
6 |12 Idigit { I.val =10 * I.Val + LexVal }
7 I-> digit { L.val = LexVal }

Parse tree for SDT: 23*5+4

ENVAL=23 InvAL=4

I.VAL=23 o o 1. VAL=5 LEXVAL=4

LvAL=2

LEXMWAL=3
LEXMNAL=2

Lecture-25-26 Page 5 of 8

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010

Example # 3
Write semantic rules which convert binary number to decimal number for the following CFG.

Given CFG

S2>0S|1S|0]1
S# | Production Semantic Rules
1 |S>0s S.DVal= S.Dval + 0*2°**™ , S.Bcount= S.bcount +1
5 |S1s S.DVal= S.Dval + 1*2°**™ 'S Bcount= S.bcount +1
3 S->0 S.DVal=0, S.Bcount=1
4 S->1 S.DVval=1, S.Bcount=1

Parse tree for SDT: (10101),=(21)10
(10101); =1%2*+0*23+1*22+0*2 +1*2° =16+0+4+0+1=(21)10

S.Dval=5+ 1*24 =21, S.Bcount=5

S.Dval=5+ 0*23 =5, S.Bcount=4

S.Dval=1+ 1*22 =5, S.Bcount=3

S.Dval=1+ 0*21=1, S.Bcount=2

/\

S S.Dval=1, S.Bcount=1

1

Example # 4

Construct a syntax-directed translation (SDT) scheme that translates arithmetic expressions from
infix notation into postfix notation.
Given CFG

EE-T|E+T|T

T2T*G|T/G |G

G->id

Lecture-25-26 Page 6 of 8

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk Whatsapp# 0346-5100010
S Production Semantic Rules
1 E>E-T Print -
2 E->E+T Print +
3 E>T {}
4 T>T*G Print *
5 T>TI/G Print /
6 T>G {}
7 G~id Print id
Parse Tree (Infix Notation = 2*3 —4 /5 +6)
E
E + T

T G

T]

T * G G Id=5
G Id=3 Id=4

Id=2

Parse Tree: (Postfix Notation=23*45/ -6 +)

E Print+
Print— E + TI
) T Print/ G Print6
£ |
Print 5
| m 1d=6
T G
Print * T /
/Nrint 3 | |
T " G G Print 4 1d=5
Print2 G 1d=3 Id=4
Id=2

Lecture-25-26 Page 7 of 8

Compiler Construction (CS-636)

Dr. Naseer Ahmed Sajid

Example #5

email id: naseer@biit.edu.pk

Whatsapp# 0346-5100010

Construct a syntax-directed translation (SDT) scheme that translates arithmetic expressions from

infix notation into postfix notation.
Given CFG

Expr-> Expr — Term | Expr +Term | Term

Term=->I1D

S Production Rules

Semantic Rules

Expr-> Expr—-Term

Print -

1

2 Expr > Expr +Term | Print +

3 E->Term {}

4 Term->I1D Print 1D.sval

Example: Convert Infix Expressions to Postfix

Expr — Expr + Term
Expr — Expr - Term
Expr — Term
Term — ID

{ print (“+”) }
{ print("-") 1}

{ print (ID.svalue) }

Expr
Expr +
Expr - Term print(“-")
Term D pPrint (™Y}
/\ sval="Y¥Y"
ID print (“X”)

sval="X"

Lecture-25-26

Term print(“+")

D print (“W”)

sval=""W"

Example
Source: X - ¥ + W

Output: X ¥ - w +

Page 8 of 8

