Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

What is Divide and Conquer?

In computer science, many algorithms are recursive in nature to solve a given problem
recursively dealing with sub-problems. In divide and conquer approach, a problem is
divided into smaller problems, then the smaller problems are solved independently, and
finally the solutions of smaller problems are combined into a solution for the large problem.
Main Parts

Generally, divide-and-conquer algorithms have three parts —

o Divide the probleminto a number of sub-problems that are smaller instances of the
same problem.

e Conquer the sub-problems by solving them recursively. If they are small enough, solve
the sub-problems as base cases.

o Combine the solutions to the sub-problems into the solution for the original problem.

divice

solve solve

CORg ey
4 subproblem subproblem

solution to
subproblem

cenmthine

solution to
problem

If we expand out two more recursive steps, it looks like this:

Page 1 of 16

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

divide P

divide divide

divide

((subproblem) ("subproblem) (“subproblem) (‘subproblem) ("subproblem) (‘subproblem) ("subproblem) (‘subproblem)
solve solve solve [solve solve solve solve solve
subproblem Y subproblem y subproblem subproblem subproblem subproblem subproblem subproblem

[s}o't_nﬁbmq} [ss»!ﬁ!iuh‘toj (soluuomoJ ['sbl.&ﬁkidkd} [solmmm] [‘@mﬂm} [-.éqlmiontpj [‘s.o‘imionm.

combine

divide divide divide

congquer

combine combine

solution o
subproblem

~ solution to
 subproblem

combine

\ combine

solution to
_ problem

Pros and Cons of Divide and Conquer Approach

Divide and conquer approach supports parallelism as sub-problems are independent. Hence, an
algorithm, which is designed using this technique, can run on the multiprocessor system or in
different machines simultaneously.

In this approach, most of the algorithms are designed using recursion; hence memory
management is very high. For recursive function stack is used, where function state needs to be

stored.

Application of Divide and Conquer Approach
Following are some problems, which are solved using divide and conquer approach.

e Finding the maximum and minimum of a sequence of numbers
e Merge sort

« Binary search

What are the basic steps?

Page 2 of 16

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

Basic steps for divide and conquer methodology are

Base Case, solve the problem directly if it is small enough

Divide the problem into two or more similar and smaller subproblems
Recursively solve the subproblems

Combine solutions to the subproblems

PonbRE

Divide and Conquer Methodology for Sorting

The general algorithm for sorting a list of values by using divide and conquer methodology is as
follow: (A is a list of values)

1. Base case at most one element (left > right), return

2. Divide A into two subarrays: FirstPart, SecondPart
e Two Subproblems:
o Sort the FirstPart
o Sort the SecondPart

3 Recursively
e Sort FirstPart

e Sort SecondPart
4 Combine sorted FirstPart and sorted SecondPart

> Merge Sort

Merge Sort is a divide-and-conquer algorithm used for sorting arrays or lists. It works
by dividing the input array into smaller subarrays, recursively sorting them, and then merging the
sorted subarrays to produce a fully sorted array.

Key Features:
o Stable Sort: Maintains the relative order of equal elements.
« Time Complexity: Always O(nlog/0in)O(nlog n), regardless of input order.
e Space Complexity: Requires extra memory for merging, with O(n)O(n) space usage.
e Algorithm Type: Recursive.

Page 3 of 16

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk

(Ais a list of values)

WhatsApp# 0346-5100010

SecondPart

Divide into FirstPart SecondPart
two halves
FirstPart
W
A is sorted!
Merge Sort Algorithm

Merge-Sort (A, left, right)
if left>right return
else
middle « (left+right)/2]
Merge-Sort (A, left, middle)
Merge-Sort (A, middle+1, right)
Merge (A, left, middle, right)

Merge(A, left, middle, right)

n1 < middle — left + 1 // ny is a size of left part

N2 «— right — middle /I nz is a size of right part

create array L[n1], R[nz]
for i« 0toni-1 do L[i] « Afleft +i]
for j «— 0 to n-1 do R[j] « A[middle+j+1]

1—j«0

k «—left
whilei<ni & j<n;
if L[i] < R[]
A[k++] « L[i++]
else
Alk++] <« R[j++]
while i <ny
A[k++] — L[i++]
while j <n;

A[k++] < R[++]

Page 4 of 16

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

Time Complexity (Merge Sort): O(nlogn)
Example (Merge Sort)

In the following example, we have shown Merge-Sort algorithm step by step. First, every
iteration array is divided into two sub-arrays, until the sub-array contains only one element.

When these sub-arrays cannot be divided further, then merge operations are performed.

|zsl1n]14[37L1a|

[2o [1o l 1a | mm
=2 EEET
e [Tar]
\\
I 10 l 14 l 29 I
[10 |\;377| 14 | 29 | a7 |

Examples
Examplel:
Input Array: [38, 27, 43, 3, 9, 82, 10]
Process:

1. Divide: Recursively split the array:
o Splitinto: [38, 27, 43] and [3, 9, 82, 10]
o Further split [38, 27, 43] into [38, 27] and [43]
o Continue until subarrays contain single elements: [38], [27], [43], [3], [9], [82],
[10]
2. Conquer: Recursively sort and merge:
o Merge [38] and [27] into [27, 38]
o Merge [27, 38] and [43] into [27, 38, 43]
o Merge [3], [9], and [10] into [3, 9, 10]
o Merge [3,9, 10] and [82] into [3, 9, 10, 82]
3. Merge: Combine sorted subarrays:
o Merge [27, 38, 43] and [3, 9, 10, 82] into [3, 9, 10, 27, 38, 43, 82].
Output: [3, 9, 10, 27, 38, 43, 82]

Example 2:

Page 5 of 16

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

Input Array: [5, 2,9, 1, 7, 6]
Process:
1. Divide:
o [5,2,9]and [1, 7, 6]
o [5,2]and[9],[1, 7] and [6]
o [8].12]. [9]. [1], [7]. [6]
2. Conquer:
Merge [5] and [2] into [2, 5]
Merge [1] and [7] into [1, 7]
Merge [2, 5] and [9] into [2, 5, 9]
Merge [1, 7] and [6] into [1, 6, 7]

O O O O

3. Merge:
o Combine[2,5,9]and[1,6, 7] into[1, 2,5, 6,7, 9].
Output: [1, 2,5, 6, 7, 9]

Recursive Definition:
Merge Sort can be defined recursively as follows:
1. If the array contains 1 or 0 elements, it is already sorted.
2. Otherwise, divide the array into two halves.
3. Recursively sort both halves.
4. Merge the two sorted halves into a single sorted array.

Time Complexity

Using Recurrence Tree:

Expand step by step:

o7 (5

) +ent+en+ en

Page 6 of 16

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

At the k-th level:

Base Case:

When 5 =1, k = log, n:
T(1) =0(1)

Substitute k£ = log, n:

T(n) = 2°2"T(1) + logyn - cn

T(n) =n-0(1) +cnlogyn

Final Solution:

Page 7 of 16

mailto:naseer@biit.edu.pk

Advanced Analysis of Algorithm (ECS-701)

» Quick Sort

It is used on the principle of divide-and-conquer. Quick sort is an algorithm of choice
in many situations as it is not difficult to implement. It is a good general purpose sort and it
consumes relatively fewer resources during execution.
Like merge sort, quick sort uses divide-and-conquer, and so it's a recursive algorithm. The way
that quick sort uses divide-and-conquer is a little different from how merge sort does.
In merge sort, the divide step does hardly anything, and all the real work happens in the combine
step. Quick sort is the opposite: all the real work happens in the divide step. In fact, the combine
step in quick sort does absolutely nothing.
Quick sort has a couple of other differences from merge sort. Quick sort works in place and its
worst-case running time is as bad as selection sort's and insertion sort's: ®(n?).
But its average-case running time is as good as merge sort's: ®(nlogn). So why think about quick
sort when merge sort is at least as good?
That's because the constant factor hidden in the big-® notation for quick sort is quite good. In
practice, quick sort outperforms merge sort, and it significantly outperforms selection sort and
insertion sort.

Quick Sort Main Parts
e Divide

o Pick any element p as the pivot, e.qg, the first element

o Partition the remaining elements into
= First Part, which contains all elements < p
= Second Part, which contains all elements > p
e Recursively sort the First Part and Second Part

e Combine: no work is necessary since sorting is done in place

Page 8 of 16

https://www.khanacademy.org/merge-sort/a/divide-and-conquer-algorithms

Advanced Analysis of Algorithm (ECS-701)

Algorithm
A P
Partition
FirstPart SecondPart
<o B p=x
Recursive call
Sorted Sorted
FirstPart SecondPart
x—p B b=~
— -
v Sorted
Partitions
Az
Al

& OO0

Quick Sort Algorithm

Quick-Sort (A, left, right)

{
if left>right return
else
middle < Partition (A, left, right)
Quick-Sort (A, left, middle-1)
Quick-Sort (A, middle+1, right)
end if
}

Page 9 of 16

Advanced Analysis of Algorithm (ECS-701)

Partition (A, left, right)
{
X «— A[left]
I — left
for j «— left+1 to right
if A[j] <xthen
1—1+1
swap (A[i], A[j])
end if
end for j
swap (A[i], A[left])
return i

ks

Example: Quick Sort

]

Step

Pivot Selection: The last element arr[4] = 40 is chosen as the pivot.
Initial Pointers:i=-1and j=0.

j
v Pivot
ar]=| 10 | 80 | 30 | 90 | 40

T

Page 10 of 16

Advanced Analysis of Algorithm (ECS-701)

02 Since, arr j] < pivot (10<40)
Increment i to 0 and swap arrfi] with arr[j]. Increment j by 1

j

Step

v Pivot
arr[] = 10 80 30 90 40
I
|
',
| Z|, Swap 10 with 10 Pivot

arr[] = 10 80 30 90 40

03 Since, arr[j] > pivot (80>40)

step | NO swap needed. Increment j by 1

]
v Pivot
arr[] = 10 80 30 90 40

O 4 Since, arr[j] < pivot (30<40)

step | INCrementi by 1 and swap arr[i] with arr[j]. Increment j by 1

i J
v v Pivot
arr[]=| 10 80 30 90 40
o S
Swap 80 with 30

Page 11 of 16

Advanced Analysis of Algorithm (ECS-701)

0 5 Since, arr[j] > pivot (90>40)

step | NO swap needed. Increment j by 1

v v Pivot
arr[] = 10 30 80 90 40

Since traversal of j has ended. Now move pivot to its
step | correct position, Swap arr[i + 1] = arr[2] with arr[4] = 40.

v Pivot
arr[] = 10 30 80 90 40
A 5
Swap 80 and 40

Partition Index(pi)=2 Pivot
arr[] = 10 30 40 90 80

Divide: by choosing any element in the sub-array array[p..r]. Call this element the pivot.
Rearrange the elements in array[p..r] so that all other elements in array[p..r] that are less than or
equal to the pivot are to its left and all elements in array[p..r] that are greater than pivot are to the
pivot's right. We call this procedure partitioning. At this point, it doesn't matter what order the
elements to the left of the pivot are in relative to each other, and the same holds for the elements
to the right of the pivot. We just care that each element is somewhere on the correct side of the
pivot.

As a matter of practice, we'll always choose the rightmost element in the sub-array, array[r], as
the pivot. So, for example, if the sub-array consists of [9, 7, 5, 11, 12, 2, 14, 3, 10, 6], then we

Page 12 of 16

Advanced Analysis of Algorithm (ECS-701)

choose 6 as the pivot. After partitioning, the sub-array might look like [5, 2, 3, 6, 12, 7, 14, 9, 10,
11]. Let g be the index of where the pivot ends up.

Conquer: by recursively sorting the sub-arrays array[p..q-1] (all elements to the left of the pivot,
which must be less than or equal to the pivot) and array[g+1..r] (all elements to the right of the

pivot, which must be greater than the pivot).

Combine: by doing nothing. Once the conquer step recursively sorts, we are done. Why? All
elements to the left of the pivot, in array[p..g-1], are less than or equal to the pivot and are sorted,
and all elements to the right of the pivot, in array[q+1..r], are greater than the pivot and are

sorted. The elements in array[p..r] can't help but be sorted!

Think about our example. After recursively sorting the sub-arrays to the left and right of the
pivot, the sub-array to the left of the pivot is [2, 3, 5], and the sub-array to the right of the pivot is
[7,9, 10, 11, 12, 14]. So the sub-array has [2, 3, 5], followed by 6, followed by [7, 9, 10, 11, 12,
14]. The sub-array is sorted.

The base cases are sub-arrays of fewer than two elements, just as in merge sort. In merge sort,
you never see a sub-array with no elements, but you can in quick sort, if the other elements in the

sub-array are all less than the pivot or all greater than the pivot.

Let's go back to the conquer step and walk through the recursive sorting of the sub-arrays. After
the first partition, we have sub-arrays of [5, 2, 3] and [12, 7, 14, 9, 10, 11], with 6 as the pivot.

To sort the sub-array [5, 2, 3], we choose 3 as the pivot. After partitioning, we have [2, 3, 5]. The
sub-array [2], to the left of the pivot, is a base case when we recurs, as is the sub-array [5], to the
right of the pivot.

To sort the sub-array [12, 7, 14, 9, 10, 11], we choose 11 as the pivot, resulting in [7, 9, 10] to
the left of the pivot and [14, 12] to the right. After these sub-arrays are sorted, we have [7, 9, 10],
followed by 11, followed by [12, 14].

Quick Sort Example

Page 13 of 16

Advanced Analysis of Algorithm (ECS-701)

A: Ml s |e6[3][5[1]7

2

i —0O

BEWN = [s [= [5 1 = [= |

Page 14 of 16

Advanced Analysis of Algorithm (ECS-701)

Recurrence Relation of Quick Sort

Let T(n)T(n)T(n) represent the time complexity of Quick Sort for an input of size nnn. The
recurrence relation can be expressed as:

T(n)=T(k)+T(n—k-1)+0O(n)
T(n)=T(k)+T(n—k—1)+0O(n)
T(n)=T(k)+T(n—k-1)+0O(n)

e The partitioning step takes O(n)O(n)O(n) time.

e The array is divided into two parts, one of size kkk and the other of size n—k—1In -k -
In—k-1.

« Inthe best and average case, the pivot divides the array into equal halves:

T(n)=2T(n/2)+O(n)

T(n) =2T(n/2) + O(n)
T(n)=2T(n/2)+O(n)

Page 15 of 16

Advanced Analysis of Algorithm (ECS-701)

Using the Master Theorem, this results in O(nlogi/oin)O(n \log n)O(nlogn).
In the worst case (when the pivot is always the smallest or largest element):

T(n)=T(n—1)+On)T(n) = T(n - 1) + O(N)T()=T(n—1)+O(n)

This results in O(n2)O(n"2)0O(n2).

Page 16 of 16

