Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk

Objectives:

(Week 08) Lectures 15 & 16

Learning objectives of these lectures are

e \What is Count Sort?

e What is Linear Sorting

e Count Sort Algorithm
e What is Bucket Sort?

e Bucket Sort Algorithm

e Bucket Sort Algorithm’s Time Complexity
e What is Radix Sort
e Radix Sort Algorithm

e Radix Sort Algorithm’s Time Complexity

e Heap Sort

e Heap Sort Complexity Analysis

Text Book & Resources:

WhatsApp# 0346-5100010

1. Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
and Clifford Stein, The MIT Press; 3rdEdition (2009). ISBN-10: 0262033844

2. Introduction to the Design and Analysis of Algorithms by Anany Levitin, Addison Wesley;
2ndEdition (2006). ISBN-10: 0321358287

3. Algorithms in C++ by Robert Sedgewick (1999). ASIN: BOO6UR4BJS

4. Algorithms in Java by Robert Sedgewick, Addison-Wesley Professional; 3" Edition(2002).
ISBN-10: 0201361205

Lectures-21-22

Page 1 of 27

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010
In the last lecture (Week#10), we discussed “Divide & Conquer” approach with Quick Sort

algorithm and its examples. In this week, we will discuss two more sorting techniques which are
Count & Bucket Sort.

«» Count Sort?

Count Sort is a Linear Sorting algorithm which sorts elements in O(n) time. No comparison

between elements has been done. The other common linear sorts include Bucket and Radix sorts.

What is Linear Sorting Algorithm?

Linear sorting algorithm is a sorting algorithm that does not use any comparison operator (>, <,
>= | <=, ==) to determine the sorting order of the elements. The sorting is achieved by acute
logic build, and the overall time taken by the algorithm is hence linear.

Actually, if we contrast linear sort to other comparison sorts with respect to time, we will find
that comparison sorts can do nlogn at their best and exponential at worse in terms of time. The
linear sort gives linear performance and thus has fine edge in time over these algorithms.

Count Sort Algorithm Description

Counting sort is an algorithm for sorting a collection of objects according to keys that are small
integers; that is, it is an integer sorting algorithm. It is a linear time sorting algorithm used to sort
items when they belong to a fixed and finite set.

The algorithm proceeds by defining an ordering relation between the items from which the set to
be sorted is derived (for a set of integers, this relation is trivial). Let the set to be sorted be called
A. Then, an auxiliary array with size equal to the number of items in the superset is defined, say
C. For each element in A, say e, the algorithm stores the number of items in A smaller than or
equal to e in C(e). If the sorted set is to be stored in an array B, then for each e in A, taken in
reverse order, B[C[e]] = e. After each such step, the value of C(e) is decremented.

Lectures-21-22 Page 2 of 27

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk

Count Sort Algorithm

CountSort(A, B, k)

{
fori=1tok

Cli]=0;
forj=1ton
C[ADII = CIALIT + 1;
for i=2 to k
CI[i] = CJi] + CJi-1];
for j=n downto 1
BICIALIII = ALI;
C[ADI] = CIALI - 1;

5
41343|c:

fori<— 1 to k
do C[/] «<— O

Lectures-21-22

WhatsApp# 0346-5100010

Page 3 of 27

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010
Loop 2
1 2 3 4 5 1 2 3 4
A:la 13]a]|3] c:[e]le]e] 1
s:[__ | | | | 1

forj<— 1 to n
do CLAL[/]] <— C[AL/]l + 1 = C[/] = {key = /}|

B: I

Lectures-21-22 Page 4 of 27

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010
Loop 3
1 2 3 4 5 1 2 3 4
Arl4a]a1]3]a|3] c[a]Jo]z2]2]
B: | | c:[a1l1]2]2]

for/ <« 2 to k
do C[/] « C[i] + C[i—1] = C[i] = |{key =< i}|

1 2 3 4 5 1 2 3 4
Al a1 343| c: | 1 022|
B | c- i 3 2|

1 2 3 4 5 2 3 4

4 | 1 4 3| c:/1]o0 22|
B | c- A= 5|

Lectures-21-22 Page 5 of 27

mailto:naseer@biit.edu.pk

Dr. Naseer Ahmed Sajid

1

Analysis of Algorithm

email id: naseer@biit.edu.pk

| a

3

4

/

B:‘

3

Loop 4
5 1
3 | c:| 1
] c: | 1

for j <« n downto 1

do

1 2 3 4 5
Al a1 | 3|4a]3 |
.
B: 3 4 |
1 2 3 4 5
A-la |1 |34 |3 |
B: =N 4 I
1 2 3 4 5
A:la|l1]|3|4]3 |
B:| 1 5 3

Lectures-21-22

BICIAL/]] <— AL/
CIALI]l < CIALIl -1

C"

C"

C"

WhatsApp# 0346-5100010

3 4
2 5|
2 4|
3 4

24|
1 4|
3 4

1 4|
1 4|

Page 6 of 27

mailto:naseer@biit.edu.pk

Dr. Naseer Ahmed Sajid

Analysis of Algorithm

email id: naseer@biit.edu.pk

WhatsApp# 0346-5100010

1 2 3 4 5 1 2 3 4
A:l41113]/4]3] clof[1]1]4]
B:{1/3[3[4]4] c:|o]l1]1]3]
Analysis
O (k) for/<- 1tok
do C[i] <« 0
(n) forj< 1ton
do C[A[/]] < C[A[]] + 1
O(k) fori< 2to k
do CI[/] < C[i] + C[i—1]
for j <« n downto 11
©(n) do B[C[AL /1] <— ALJ]
CIAL/] < CIA[] — 1
o(n + K)
Example 2:

For the given input array A[] (note thatk = 6, i.e. the largest value in the array) the first and

second C[] arrays are

shown along with the

reordering (which

takes place from

the end of A[] forward with the values subscripted to demonstrate the stable sorting property).

Lectures-21-22

Page 7 of 27

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010
A (2|4 0[6|1(4]|0

C

oM
i
M| =
W o
BN
o
o=

+» Bucket Sort?

Bucket sort is a comparison sort algorithm that operates on elements by dividing them into
different buckets and then sorting these buckets individually. Each bucket is sorted individually
using a separate sorting algorithm or by applying the bucket sort algorithm recursively. Bucket

sort is mainly useful when the input is uniformly distributed over a range.

For example, consider the following problem. Sort a large set of floating point numbers which
are in range from 0.0 to 1.0 and are uniformly distributed across the range. How do we sort the

numbers efficiently?

A simple way is to apply a comparison based sorting algorithm. The lower bound for
Comparison based sorting algorithm (Merge Sort, Heap Sort, Quick-Sort .. etc) is Q(n Log n),

i.e., they cannot do better than nLogn.

Lectures-21-22 Page 8 of 27

mailto:naseer@biit.edu.pk
https://www.geeksforgeeks.org/lower-bound-on-comparison-based-sorting-algorithms/
https://www.geeksforgeeks.org/lower-bound-on-comparison-based-sorting-algorithms/

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010
Can we sort the array in linear time? Counting sort cannot be applied here as we use keys as

index in counting sort. Here keys are floating point numbers. The idea is to use bucket sort.

Following is bucket algorithm.
Bucket Sort Algorithm
1. Distribute the elements into buckets or bins.

2. Sort each bucket individually.
3. Merge the buckets in order to produce a sorted array as the result.

Time Complexity

Expected total time is O(n + N),
Where n = size of original sequence
if N is O(n) - sorting algorithm in O(n) !

Bucket Sort Algorithm Example

29

Each element of the array is put in one of the N “buckets

P0G E
2 IIJ I:l A pa
2][] 1 =
’ 2 [(1-B]
3

— -

Now each element is
in the proper bucket:

1 [~ [1}~[E
2 [}~z
3 B

Lectures-21-22 Page 9 of 27

mailto:naseer@biit.edu.pk
https://www.geeksforgeeks.org/counting-sort/

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

Wad
Now, pull the elements from the buckets 1 ,_> L
into the array . —
2
P

3

ARN
ID»H%‘//
2 [[2F{2l=3

3 —

At last, the sorted array
(sorted in a stable way):

Example 2

1. Distribute elements in buckets:

29 25 3 49 9 37 21 43

3 29 25 37 49

0-2 10-19 20-2% 30-39 40-49

2. Sorting inside every bucket and merging:

Lectures-21-22

Page 10 of 27

mailto:naseer@biit.edu.pk
https://camo.githubusercontent.com/10e73aca86e6abd85f32f63a270126a19f00414c/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f636f6d6d6f6e732f362f36312f4275636b65745f736f72745f312e706e67

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010
0-9 10-19 20-29 30-39 40-49

@ |

3
3 9 21 25 29 37 43 49

Example 3
Input

Suppose we have the following list of elements: [2, 56, 4, 77, 26, 98, 55]. Let's use 10 buckets.
To determine the capacity of each bucket we need to know the maximum element value, in this
case 98.

So the buckets are:

e bucket1l:from0Oto9
o bucket 2: from 10 to 19
o bucket 3: from 20 to 29

e and soon.

Distribution

Now we need to choose a distribution function.
bucketNumber = (elementValue / totalNumberOfBuckets) + 1
Such that by applying that function we distribute all the elements in the buckets.

In our example it is like the following:

Apply the distribution function to 2. bucketNumber =(2/10)+1=1
. Apply the distribution function to 56. bucketNumber = (56/10) +1 =6

1.
2
3. Apply the distribution function to 4. bucketNumber =(4/10)+1=1

4. Apply the distribution function to 77. bucketNumber = (77/10) +1 =8
5. Apply the distribution function to 26. bucketNumber = (26 /10) + 1 =3
6. Apply the distribution function to 98. bucketNumber = (98 /10) + 1 =10
7. Apply the distribution function to 55. bucketNumber = (55/10) + 1 =6

Lectures-21-22 Page 11 of 27

mailto:naseer@biit.edu.pk
https://camo.githubusercontent.com/19ff8f6edf48140cbf28fa9907b42bcb19fa14e7/68747470733a2f2f75706c6f61642e77696b696d656469612e6f72672f77696b6970656469612f636f6d6d6f6e732f332f33392f4275636b65745f736f72745f322e706e67

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

Our buckets will be filled now:

1."":[2,4] 6l‘llr:[55,56]
2 ‘II': [] 7'|Ilr:[]

3 ‘IIIF:[ze] 8]IIIP:[77]

4]II': [9 ‘II': []

5 1IIIF;[] 10 1II|P:[98]

We can choose to insert the elements in every bucket in order, or sort every bucket after
distributing all the elements.

Put the elements back in the list

Finally we go through all the buckets and put the elements back in the list:

[2, 4, 26, 55, 56, 77, 98]

+» Radix Sort

The lower bound for Comparison based sorting algorithm (Merge Sort, Heap Sort, Quick-Sort ..
etc) is Q(nLogn), i.e., they cannot do better than nLogn.

Counting sort is a linear time sorting algorithm that sort in O(n+k) time when elements are in
range from 1 to k.

What if the elements are in range from 1 to n®?

We can’t use counting sort because counting sort will take O(n?) which is worse than comparison

based sorting algorithms. Can we sort such an array in linear time?

Lectures-21-22 Page 12 of 27

mailto:naseer@biit.edu.pk
https://camo.githubusercontent.com/a419b8438fd7c693c39b20ed2eae0d893bd5a08b/68747470733a2f2f706978616261792e636f6d2f7374617469632f75706c6f6164732f70686f746f2f323031342f30332f32342f31372f32312f7061696c2d3239353439315f3936305f3732302e706e67
https://camo.githubusercontent.com/a419b8438fd7c693c39b20ed2eae0d893bd5a08b/68747470733a2f2f706978616261792e636f6d2f7374617469632f75706c6f6164732f70686f746f2f323031342f30332f32342f31372f32312f7061696c2d3239353439315f3936305f3732302e706e67
https://camo.githubusercontent.com/a419b8438fd7c693c39b20ed2eae0d893bd5a08b/68747470733a2f2f706978616261792e636f6d2f7374617469632f75706c6f6164732f70686f746f2f323031342f30332f32342f31372f32312f7061696c2d3239353439315f3936305f3732302e706e67
https://camo.githubusercontent.com/a419b8438fd7c693c39b20ed2eae0d893bd5a08b/68747470733a2f2f706978616261792e636f6d2f7374617469632f75706c6f6164732f70686f746f2f323031342f30332f32342f31372f32312f7061696c2d3239353439315f3936305f3732302e706e67
https://camo.githubusercontent.com/a419b8438fd7c693c39b20ed2eae0d893bd5a08b/68747470733a2f2f706978616261792e636f6d2f7374617469632f75706c6f6164732f70686f746f2f323031342f30332f32342f31372f32312f7061696c2d3239353439315f3936305f3732302e706e67
https://camo.githubusercontent.com/a419b8438fd7c693c39b20ed2eae0d893bd5a08b/68747470733a2f2f706978616261792e636f6d2f7374617469632f75706c6f6164732f70686f746f2f323031342f30332f32342f31372f32312f7061696c2d3239353439315f3936305f3732302e706e67
https://camo.githubusercontent.com/a419b8438fd7c693c39b20ed2eae0d893bd5a08b/68747470733a2f2f706978616261792e636f6d2f7374617469632f75706c6f6164732f70686f746f2f323031342f30332f32342f31372f32312f7061696c2d3239353439315f3936305f3732302e706e67
https://camo.githubusercontent.com/a419b8438fd7c693c39b20ed2eae0d893bd5a08b/68747470733a2f2f706978616261792e636f6d2f7374617469632f75706c6f6164732f70686f746f2f323031342f30332f32342f31372f32312f7061696c2d3239353439315f3936305f3732302e706e67
https://camo.githubusercontent.com/a419b8438fd7c693c39b20ed2eae0d893bd5a08b/68747470733a2f2f706978616261792e636f6d2f7374617469632f75706c6f6164732f70686f746f2f323031342f30332f32342f31372f32312f7061696c2d3239353439315f3936305f3732302e706e67
https://camo.githubusercontent.com/a419b8438fd7c693c39b20ed2eae0d893bd5a08b/68747470733a2f2f706978616261792e636f6d2f7374617469632f75706c6f6164732f70686f746f2f323031342f30332f32342f31372f32312f7061696c2d3239353439315f3936305f3732302e706e67

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010
Radix Sort is the answer. The idea of Radix Sort is to do digit by digit sort starting from least

significant digit to most significant digit. Radix sort uses counting sort as a subroutine to sort.
The Radix Sort Algorithm
1) Do following for each digit i where i varies from least significant digit to the most significant
digit.
a) Sort input array using counting sort (or any stable sort) according to the i’th digit.
Example:
Original, unsorted list:
170, 45, 75, 90, 802, 24, 2, 66

Sorting by least significant digit (1s place) gives: [*Notice that we keep 802 before 2, because
802 occurred before 2 in the original list, and similarly for pairs 170 & 90 and 45 & 75.]

170, 90, 802, 2, 24, 45, 75, 66
Sorting by next digit (10s place) gives: [*Notice that 802 again comes before 2 as 802 comes

before 2 in the previous list.]

802, 2, 24, 45, 66, 170, 75, 90
Sorting by most significant digit (100s place) gives:

2,24, 45, 66, 75, 90, 170, 802

What is the running time of Radix Sort?

Let there be d digits in input integers. Radix Sort takes O(d*(n+b)) time where b is the base for
representing numbers, for example, for decimal system, b is 10. What is the value of d? If k is
the maximum possible value, then d would be O(logn(k)). So overall time complexity is O((n+b)
* logn(k)). Which looks more than the time complexity of comparison based sorting algorithms
for a large k. Let us first limit k. Let k <= n® where c is a constant. In that case, the complexity

becomes O(nLogn(n)). But it still doesn’t beat comparison based sorting algorithms.

What if we make value of b larger?. What should be the value of b to make the time complexity

linear? If we set b as n, we get the time complexity as O(n). In other words, we can sort an array

Lectures-21-22 Page 13 of 27

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010
of integers with range from 1 to n° if the numbers are represented in base n (or every digit takes

log2(n) bits).

Is Radix Sort preferable to Comparison based sorting algorithms like Quick-Sort?

If we have logzn bits for every digit, the running time of Radix appears to be better than Quick
Sort for a wide range of input numbers. The constant factors hidden in asymptotic notation are
higher for Radix Sort and Quick-Sort uses hardware caches more effectively. Also, Radix sort
uses counting sort as a subroutine and counting sort takes extra space to sort numbers.
Algorithm;

For each digit i where i varies from the least significant digit to the most significant digit of a
number. Sort input array using count sort algorithm according to ith digit. We used count sort
because it is a stable sort.

Examples No# 1

Unsorted List : 329, 457, 657, 839, 436, 720, 355

329 72§ 78
457 35§ el |
657 a3f 28
839 -->> L | >
436 650 el |
720 328 a8l
355 83l 657

Sorted List : 329, 355, 436, 457, 657, 720, 839

00
8
:
v

Examples No# 2
Unsorted List: 326, 453, 608, 835,751, 435, 704, 690

326 69l 78
453 750 608
608 45§]|
835 708 |

Lectures-21-22 Page 14 of 27

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

751 - > 83§ > 48R >

435 a3f /| 704
704 328 25 751
690 608 690 835

Sorted List: 326,435, 453,608, 690,704, 751, 835

Time Complexity

e Best, Average and Worst: O(nk)

e where n is the number of elements and k is the number o digits in the largest number (or the
number of passes).

Space Complexity

e O(n+k)

e Where n is the number of elements and K is the range of digit values.

Recursive Definations
Base Case

T(n,0)=0(1)

if k=0 (it means there is no digit for process then time complexity is constant)
Recursive Case

T(n,K)=T(n,k-1)+O(n)

Recurrence Relation
T(n,k)=T(n,k-1)+O(n)
T(n,k-1)=T(n,k-2)+0(n)

T(n,k)=T(n,k-2)+0(n)+0O(n)
T(n,K)=T(n,k-2)+20(n)

Lectures-21-22 Page 15 of 27

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

T(n,k-2)=T(n,k-3)+0O(n)
T(n,k)=T(n,k-3)+0(n)+20(n)
T(n,k)=T(n,k-3)+30(n)

T(n,k)=T(n,0)+k. O(n)
T(n,k)=0(1)+0O(k.n)
T(n,k)=0(k.n)
Recursive Algorithm
e Here's an example of a recursive radix sort algorithm:
e Sort the numbers by the most significant digit (MSD). For example, if the numbers are in the
hundreds place, sort them into buckets based on the hundreds digit.
e Sort the numbers in each bucket by the next digit. For example, if the numbers in the zero
hundreds bucket are sorted by the tens digit, sort them into buckets based on the tens digit.
e Repeat the process until the last significant digit has been sorted.
Explanation
e Radix sort is a non-comparison sorting algorithm that sorts numbers by processing them
digit by digit. It can be implemented recursively (MSD radix sort) or non-recursively (LSD

radix sort).

Radix Sort Real Life Examples

1. Sorting CNIC Numbers

Scenario: Organizing National Identity Card (CNIC) numbers in a database.

Approach: CNIC numbers are 13 digits long, making them perfect for radix sorting digit by
digit.

2. Sorting Roll Numbers for Exam Results

Lectures-21-22 Page 16 of 27

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010
Scenario: Organizing student roll numbers while preparing exam results.

Approach: Roll numbers can be sorted efficiently since they are numeric and structured.

s Heap Sort

Lectures-21-22 Page 17 of 27

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010
Heap sort is a comparison based sorting technique based on Binary Heap data structure. It is

similar to selection sort where we first find the maximum element and place the maximum

element at the end. We repeat the same process for remaining element.

What is Binary Heap?

Let us first define a Complete Binary Tree. A complete binary tree is a binary tree in which
every level, except possibly the last, is completely filled, and all nodes are as far left as possible.
A Binary Heap is a Complete Binary Tree where items are stored in a special order such that
value in a parent node is greater (or smaller) than the values in its two children nodes. The
former is called as max heap and the latter is called min heap. The heap can be represented by

binary tree or array.

Why array based representation for Binary Heap?

Since a Binary Heap is a Complete Binary Tree, it can be easily represented as array and array
based representation is space efficient. If the parent node is stored at index I, the left child can be
calculated by 2 * I + 1 and right child by 2 * | + 2 (assuming the indexing starts at 0).

Heap Sort Algorithm for sorting in increasing order:

1. Build a max heap from the input data.

2. At this point, the largest item is stored at the root of the heap. Replace it with the last item of
the heap followed by reducing the size of heap by 1. Finally, heapify the root of tree.

3. Repeat above steps while size of heap is greater than 1.

Complexity:

max_heapify has complexity O(logN), build_maxheap has complexity O(N) and we run
max_heapify N—1 times in heap_sort function, therefore complexity of heap_sort function
is O(NlogN)

Lectures-21-22 Page 18 of 27

mailto:naseer@biit.edu.pk
http://geeksquiz.com/binary-heap/
http://geeksquiz.com/binary-heap/

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010
Example:

In the diagram below, initially there is an unsorted array Arr having 6 elements and then max-

heap will be built.

Arr 4 3 7 i & 8 S
o 5 2 3 e S5 (3
Initial Elements Max Heap
4 8
3 7 > 4 7
i 8 S5) 1 3 5

After building max-heap, the elements in the array Arr will be:

Arr 8 4 7 1 3 5

Steps
Step 1: 8 is swapped with 5.

Step 2: 8 is disconnected from heap as 8 is in correct position now and.
Step 3: Max-heap is created and 7 is swapped with 3.

Step 4: 7 is disconnected from heap.

Step 5: Max heap is created and 5 is swapped with 1.

Step 6: 5 is disconnected from heap.

Step 7: Max heap is created and 4 is swapped with 3.

Step 8: 4 is disconnected from heap.

Step 9: Max heap is created and 3 is swapped with 1.

Step 10: 3 is disconnected.

Lectures-21-22 Page 19 of 27

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid
Step 1

Initial Elements

L8) —w

Lectures-21-22

email id: naseer@biit.edu.pk

WhatsApp# 0346-5100010

Step 2

Page 20 of 27

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010
Step 7 Step 8
Max Heap
(¢ 4) - e
S Ca)
— T — ..-____/.
@ @ - 000 @®
Step 9 Step 10
Max Heap

- @ - 000 ®
OO ® @

After all the steps, we will get a sorted array.

Arr 1 3 4 5 7 a8

Lectures-21-22 Page 21 of 27

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

Example
Consider the following list of unsorted numbers which are to be sort using Heap Sort

82, 90, 10, 12, 15, 77, 55, 23

Step 1 - Construct a Heap with given list of unsorted numbers and convert to Max Heap

Heapify

@—> e o
® 0 ® ©® OO ®
® @

Heap Max Heap

list of numbers after heap converted to Max Heap
90, 82, 77, 23, 15, 10, 55, 12

Lectures-21-22 Page 22 of 27

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

Step 2 - Delete root (90) from the Max Heap. To delete root node it needs to be swapped
with last node (12). After delete tree needs to be heapify to make it Max Heap.

@

Heapify
@—> 6 o
® @ ® ©® 6 ®

list of numbers after swapping 90 with 12.
12, 82, 77, 23, 15, 10, 55, 90

Step 3 - Delete root (82) from the Max Heap. To delete root node it needs to be swapped
with last node (55). After delete tree needs to be heapify to make it Max Heap.

D) @

Heapify

® @ —> @ &
@ OO ® ®O

Heap after B2 deleted Max Heap
list of numbers after swapping 82 with 55.
12, 55, 77, 23, 15, 10, 82, 90

Step 4 - Delete root (77) from the Max Heap. To delete root node it needs to be swapped
with last node (10). After delete tree needs to be heapify to make it Max Heap.

i ®
® ©®—> @
@ ® ® ®

Heap after 77 deleted Max Heap

list of numbers after swapping 77 with 10.
12, 55, 10, 23, 15, 77, 82, 90

Lectures-21-22 Page 23 of 27

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

Step 5 - Delete root (55) from the Max Heap. To delete root node it needs to be swapped
with last node (15). After delete tree needs to be heapify to make it Max Heap.

@) @

Heapify

® ©@—> 6
® ®

Heap after 55 deleted

Max Heap

list of numbers after swapping 55 with 15.
12, 15, 10, 23. 56, 77, 82, 90

Step 6 - Delete root (23) from the Max Heap. To delete root node it needs to be swapped
with last node (12). After delete tree needs to be heapify to make it Max Heap.

@) @

Heapify

@ ©®—> @

Heap after 23 deleted Max Heap

list of numbers after swapping 23 with 12.
12, 15, 10, 23, 55, 77, 82, 90

Step 7 - Delete root (15) from the Max Heap. To delete root node it needs to be swapped
with last node (10). After delete tree needs to be heapify to make it Max Heap.

Heapify @ Delete 12 Delete 10
@ —> —> (9 ——pEmpty

Heap after 23 deleted Max Heap

list of numbers after Deleting 15, 12 & 10 from the Max Heap.
10, 12, 15, 23, 55, 77, 82, 90

Whenever Max Heap becomes Empty, the list get sorted in Ascending order

Example

Lectures-21-22 Page 24 of 27

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid

email id: naseer@biit.edu.pk

10| 1 (23|50 7 | -4
0 1 2 3 4 5
Initial Array
10
1 23

Lectures-21-22

—

WhatsApp# 0346-5100010

50

10

23

1|7

0

1

2

A

Initial Max Heap

10

50

23

Page 25 of 27

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010
Step 1: Initial Max Heap Step 2
S50 = -4
8 (23 — 10, (23
[= = w - =
1 i -4 1 F @
Step 3: Max Heap Step 4
23 |- F
% e | - 'l
10) (-4 — 10 -4
S ! 123 150
Step 5: Max Heap Step 6
10 ~ 1
) (o | — %) (A
1~ g
DD DOD
Step 7: Max Heap Step 8
T ™~ & §
Y -3 -" =
1 3 -4 — 1
Step 9: Max Heap Step 10
1

E
-

55 —_ 2
7 J10123 50 @

Example

Lectures-21-22 Page 26 of 27

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid

/N Pt
N TN |

i) Build-Max-Heap

i TN ®
o

2 |

iy Pick Root

P
[\

1

iii) Max-Heapify ~ (10)(11)(12)

Lectures-21-22

1k 12,

email id: naseer@biit.edu.pk

PV

< N o Y
P O |
| i) Fﬁ'ck Root (12)

iii) Max-Heapify (11) 12

é/ " \5
?/ \3 -2/ \-‘4
I §) '

1

i) Pick Root 'a Y 10) 1)12

WhatsApp# 0346-5100010

iii) Max-Heapify (12

o N
(?/ \3 5'/-\."4

I

1]

ii) Pick Root (10)(11)12)

{1

iii) Max-Heapify (9 /10)11 12

Page 27 of 27

mailto:naseer@biit.edu.pk

