
Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

 Page 1 of 13

 Longest Common Subsequence (LCS)

LCS Problem Statement: Given two sequences, find the length of longest subsequence present in

both of them. A subsequence is a sequence that appears in the same relative order, but not

necessarily contiguous. For example, “abc”, “abg”, “bdf”, “aeg”, ‘”acefg”, .. etc are

subsequences of “abcdefg”. So a string of length n has 2n different possible subsequences.

It is a classic computer science problem, the basis of diff (a file comparison program that outputs

the differences between two files), and has applications in bioinformatics.

Examples:

LCS for input Sequences “ABCDGH” and “AEDFHR” is “ADH” of length 3.

LCS for input Sequences “AGGTAB” and “GXTXAYB” is “GTAB” of length 4.

Objective:

Given two string sequences, write an algorithm to find the length of longest subsequence present

in both of them.

These kind of dynamic programming questions are very famous in the interviews like Amazon,

Microsoft, Oracle and many more. A longest subsequence is a sequence that appears in the same

relative order, but not necessarily contiguous (not substring) in both the string.

Example:

String A = "acbaed"; String B = "abcadf";

Longest Common Subsequence (LCS): acad, Length: 4

mailto:naseer@biit.edu.pk
http://en.wikipedia.org/wiki/Diff
http://algorithms.tutorialhorizon.com/files/2015/06/Longest-Common-Subsequence-example.jpg

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

 Page 2 of 13

Example

Given two sequences of symbols, X and Y, determine the longest subsequence of symbols that

appears in both X and Y.

Example:

 X = <A, B, C, B, D, A, B>

 Y = <B, D, C, A, B, A>

LCS of X, Y?

 <B, C, B, A>

 <B, D, A, B>

1. Enumerate all subsequences of X.

2. Each subsequence of X corresponds to

a subset of indices {1, 2, ….,m} of X.

There are 2m subsequences of X, so this approach requires exponential time.

Algorithm to compute the above table is given below

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

 Page 3 of 13

I. Characterize the LCS problem
• The LCS problem has an optimal substructure property.

• Can we formulate optimal substructure?
• ith preifx of a sequence X is Xi, e.g.,

• X4 of sequence X = <A, B, C, B, D, A, B> is <A, B, C, B>

Optimal Substructure of an LCS:
Let X = <x1, x2, x3,…..,xm> and

 Y = <y1, y2, y3,…..,yn> and let

 Z = <z1, z2, z3,….zk> be any LCS of X and Y

1. If xm = yn then zk = xm = yn and zk-1 is an LCS of Xm-1 and Yn-1.

2. If xm  yn then zk xm implies that Z is an LCS of Xm-1 and Y.

3. If xm  yn then zk  yn implies that Z is an LCS of X and Yn-1

Step 1: Characterizing an LCS

• LCS problem has an optimal substructure property. I.e.

• There are either one or two sub-problems to examine when finding an LCS of

 X = <x1, x2,…..,xm>, Y = <y1,y2,…..,yn>

• if xm = yn

– find an LCS of Xm-1 and Yn-1 appending xm and yn (xm = yn) to this LCS yields an

LCS of X and Y.

• If xm  yn

– solve two sub-problems:

– Finding an LCS of Xm-1 and Y

– Finding an LCS of X and Yn-1

– Longer of I and II is an LCS of X and Y.

• This shows overlapping sub-problmes property in LCS.

Step 2:

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

 Page 4 of 13

Define a recursive definition

 Establish a recurrence for the cost of an optimal solution

 Let LCS[i,j] to be the length of the longest common subsequences (LCS) of Xi an Yj.

Recursive Definition for LCS

 0 if (i = 0 or j = 0)

LCS (i , j) = LCS(i-1 , j-1) +1 if (i , j > 0 and Xi = Yj)

 MAX (LCS (i , j-1) , LCS (i-1 , j)) if (i , j > 0 and Xi ≠ Yj)

X= <X1, X2, X3, …, Xm>

Y= <Y1, Y2, Y3, …, Yn>

Where i varies from 0 to m and j varies from 0 to n.

Step 3:

Devise an algorithm to compute the length of an LCS and then construct the LCS.

 Development of an algorithm

 Input two sequences X and Y and a two dimensional table LCS[0..m , 0..n]

 According to the definition

Memorized Algorithm

for(i =1; i<=m; i++)

{

 for(j =1; j<=n; j++)

 {

 if (X[i] = =Y[j])

 LCS[i , j] = LCS[i-1 , j-1] + 1;

 else if (LCS[i-1,j] >= LCS[i , j-1]) /* It means to compute LCS[i,j]

 LCS[i , j] = LCS[i-1 , j]; We need to know

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

 Page 5 of 13

 else LCS[i-1 , j-1]

, LCS[i, j-1],

 LCS[i , j] = LCS[i , j-1]; and LCS[i-1 , j]

 } */

}

 Assembly Line Scheduling (ALS)

A car factory has two assembly lines, each with n stations. A station is denoted by

Si,j where i is either 1 or 2 and indicates the assembly line the station is on, and j indicates the

number of the station.

The time taken per station is denoted by ai,j. Each station is dedicated to some sort of work like

engine fitting, body fitting, painting and so on. So, a car chassis must pass through each of the n

stations in order before exiting the factory.

The parallel stations of the two assembly lines perform the same task. After it passes through

station Si,j, it will continue to station Si,j+1 unless it decides to transfer to the other line.

Continuing on the same line incurs no extra cost, but transferring from line i at station j – 1 to

station j on the other line takes time ti,j.

Each assembly line takes an entry time ei and exit time xi which may be different for the two

lines. Give an algorithm for computing the minimum time it will take to build a car chassis.

 Automobile factory with two assembly lines

o Each line has n stations: S1,1, . . . , S1,n and S2,1, . . . , S2,n

o Corresponding stations S1, j and S2, j perform the same function but can take

different amounts of time a1, j and a2, j

o Entry times are: e1 and e2; exit times are: x1 and x2

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

 Page 6 of 13

The following information can be extracted from the problem statement to make it simpler:

 Two assembly lines, 1 and 2, each with stations from 1 to n.

 A car chassis must pass through all stations from 1 to n in order(in any of the two

assembly lines). i.e. it cannot jump from station i to station j if they are not at one move

distance.

 The car chassis can move one station forward in the same line, or one station diagonally

in the other line. It incurs an extra cost ti, j to move to station j from line i. No cost is

incurred for movement in same line.

– transfer to other line: cost after Si,j is ti,j , j = 1, . . . , n - 1

 The time taken in station j on line i is ai, j.

 Si, j represents a station j on line i.

Problem:

What stations should be chosen from line 1 and which from line 2 in order to minimize the total

time through the factory for one car?

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

 Page 7 of 13

Brute Force

o Enumerate all possibilities of selecting stations

o Compute how long it takes in each case and choose the best one

o There are 2n possible ways to choose stations

o Infeasible when n is large!!

Optimal Solution

• How do we compute the minimum time of going through a station?

• Let’s consider all possible ways to get from the starting point through station S1,j

• We have two choices of how to get to S1, j:

• Through S1, j - 1, then directly to S1, j

• Through S2, j - 1, then transfer over to S1, j

Structure of the optimal solution

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

 Page 8 of 13

Suppose that the fastest way through S1, j is through S1, j – 1

We must have taken a fastest way from entry through S1, j – 1

If there were a faster way through S1, j - 1, we would use it instead

Similarly for S2, j – 1

• Generalization: an optimal solution to the problem “find the fastest way through S1, j”

contains within it an optimal solution to subproblems: “find the fastest way through S1, j - 1

or S2, j – 1”.

• We use this property to construct an optimal solution to a problem from optimal solutions

to sub-problems

Recursive Solution

Define the value of an optimal solution in terms of the optimal solution to sub-problems

Definitions:

– f* : the fastest time to get through the entire factory

– fi[j] : the fastest time to get from the starting point through station Si,j

 f* = min (f1[n] + x1, f2[n] + x2)

Base case: j = 1, i=1, 2 (getting through station 1)

 f1[1] = e1 + a1,1

 f2[1] = e2 + a2,1

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

 Page 9 of 13

Recursive Definition

ei + ai,j if

(i=1 or 2 & j = 1)

f[i,j] = MIN(f[i, j-1] + ai, j , f [i+1, j-1] + ti+1, j-1 + ai, j) if (i=1 & j ≥ 2)

MIN(f[i, j-1] + ai, j , f [i-1, j-1] + ti-1, j-1 + ai, j) if (i=2 & j ≥ 2)

result = min (f[1,n] + x1, f[2,n] + x2)

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

 Page 10 of 13

Example

Recursive Algorithm

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

 Page 11 of 13

ALS(i , j) {

 if(i=1 or 2 and j=1)

 return eij+aij

 else if (i=1 and j>1)

 return MIN(ALS(i, j-1) + ai, j , ALS(i+1, j-1) + ti+1, j-1 + ai, j)

else if (i=2 and j>1)

return MIN(ALS(i, j-1) + ai, j , ALS(i-1, j-1) + ti-1, j-1 + ai, j)

}

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

 Page 12 of 13

Example:

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

 Page 13 of 13

Sol:

Line S1 S2 S3 Cost

L1 16[1] 14[2] 31[1] 36[1]

L2 8[2] 20[2] 24[1] 31[2]

L2 15[3] 17[2] 20[1] 25[3]

mailto:naseer@biit.edu.pk

