Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

Week 11
% Greedy Algorithm

A greedy algorithm is a simple algorithm that is used in optimization problems. The algorithm
makes the optimal choice at each step as it attempts to find the overall optimal way to solve the
entire problem. Greedy algorithms are quite successful in some problems, such as Huffman

encoding which is used to compress data, or Dijkstra's Algorithm, which is used to find the

shortest path through a graph.
Structure of a Greedy Algorithm

Greedy algorithms take all of the data in a particular problem, and then set a rule for which
elements to add to the solution at each step of the algorithm.

Greedy choice property

A global (overall) optimal solution can be reached by choosing the optimal choice at each step.

Optimal substructure

A problem has an optimal substructure if an optimal solution to the entire problem contains the

optimal solutions to the sub-problems.

In other words, greedy algorithms work on problems for which it is true that at every step, there
is a choice that is optimal for the problem up to that step, and after the last step, the algorithm
produces the optimal solution of the complete problem.

Greedy Algorithm

e An optimization problem is one in which you want to find, not just a solution, but the
best solution
o A “greedy algorithm” sometimes works well for optimization problems
e A greedy algorithm works in phases. At each phase:
o You take the best you can get right now, without regard for future consequences
o You hope that by choosing a local optimum at each step, you will end up at a
global optimum

% Huffman Coding

Lectures-27-28 Page 1 of 10

mailto:naseer@biit.edu.pk
https://brilliant.org/wiki/huffman-encoding/
https://brilliant.org/wiki/huffman-encoding/
https://brilliant.org/wiki/dijkstras-short-path-finder/

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010
Overview:

Huffman Coding is a popular algorithm used for lossless data compression. It's named
after its inventor, David A. Huffman, who introduced it in 1952. This algorithm is particularly
effective because it assigns shorter codes to more frequent characters and longer codes to less
frequent characters.

Key Concepts
Lossless Compression: Huffman Coding is a type of lossless compression, meaning no data
is lost during the process. This makes it ideal for text and other data where exact
reconstruction is critical.

Frequency Analysis: The algorithm uses the frequency of each character in the input data to
build a binary tree. Characters that appear more frequently are given shorter binary codes.

Binary Tree: Huffman Coding constructs a binary tree, also known as a Huffman Tree,
based on the frequency of characters. Each leaf node represents a character, and the path
from the root to the leaf gives the character's code.

How its Works..?
e Calculate Frequency:
i. First we calculate the frequency (count) of each character in the data.
ii. Create a list of nodes, where each node represents a character and its frequency.
e Build the Priority Queue:
i. Insert all nodes into a priority queue (min-heap), which is sorted by frequency.
ii.Nodes with lower frequencies have higher priority.
e Construct the Huffman Tree:
While there is more than one node in the priority queue:
i. Remove the two nodes with the lowest frequency.
ii. Create a new node with these two nodes as children and the sum of
their frequencies as the new node's frequency.
iii. Insert the new node back into the priority queue.

Time Complexity
O(nlogn)

Example:
We have a Message which has 100 Characters.
And in this message we have:

a=50 ; b=10
c=30 ; d=5
e=3 f=2

Solution:
Message = 100 characters
Ffrequencies of char that are present in message also given in question...

1%t of all if we use ASCII to send the message

Lectures-27-28 Page 2 of 10

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010
For character ACSII (0-127) -->(7-bits)
Message = 100 (character) * 7bits
Total cost = 700bits
2nd if see we have 6c¢har in message
And 6 character
a-000
b-001
c-010
d-011
e-100
f-101
Now
We use “Huffman Coding Technique”
First of all, we make huffman tree

f e
2 3
Now we make a table for code of each character
AS we see
There are 3bits are use for 6 char
So

3 * 100 = 300bits

Lectures-27-28 Page 3 of 10

mailto:naseer@biit.edu.pk

Dr. Naseer Ahmed Sajid

Analysis of Algorithm

email id: naseer@biit.edu.pk

WhatsApp# 0346-5100010

Data Frequency Variable bits code Total Bits

a 50 0 50
b 10 100 30
C 30 11 60
d 05 1010 20
e 03 10111 15
f 02 10110 10

Total 185

Example

newlines.

The normal ASCII character set consists of roughly 100 “printable” characters.
In order to distinguish these characters, [log 100 | = 7 bits are required.

Seven bits allow the representation of 128 characters, so
The ASCII character set adds some other “nonprintable” characters.
An eighth bit is added as a parity check.

The important point, however, is that
If the size of the character set is C, then [log C | bits are needed in a standard encoding.
Suppose we have a file that contains only the characters a, e, i, s, t, plus blank spaces and

e The following table shows the frequency of each character and also the total numbers of bits
required to store these characters.

Character Code Frequency Total Bits
A 000 10 30
E 001 15 45
I 010 12 36
S 011 3 9
T 100 4 12
SPACE 101 13 39
NEWLINE 110 1 3

Lectures-27-28

Page 4 of 10

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010
TOTAL 174

e Since, disk space is precious on virtually every machine, therefore the question is
e Isit possible to provide a better code and reduce the total number of bits required?
e The answer is, this is possible, and a simple strategy achieves 25 percent savings on typical
large files and 50 to 60 percent savings on many large data files.
e The general strategy is
o Toallow the code length to vary from character to character and to ensure that the
frequently occurring characters have short code.
e If all the characters occur with the same frequency, then
o There is not likely to be any savings.

e The binary code that represents the
alphabet can be represented by the binary

tree. .

N

./‘<. N \.\:

The tree has data only at the leaves

./‘<. AN \.\4’

* The representation of each character can be found by starting at the root
and recording the path, using a 0 to indicate the left branch and a 1 to
indicate the right branch.

e E.g.sisencodedas011.
* |If character ¢, is at depth d,and occurs f; times, then the cost of the code is

equal to d,f, and if there are n characters, then 2 d/f; 1o, i

Lectures-27-28 Page 5 of 10

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

e
/\.A N

A better tree can be obtained that by noticing that the newline is an
only child.

By placing the newline symbol one level higher, we obtain the new

/‘if\. \}

e This new tree has a cost of 173, but is still
far more optimal.

e This tree is a strictly binary tree.

If the characters are placed only at the leaves, any sequence of bits can always be decoded
unambiguously.

E.g. suppose the encoded string is 0100111100010110001000111.

0 is not a character code, 01 is not a character code but 010 represents i.

So the fist character is i.

Then 011 follows, giving a t.

Then 11 follows, which is a newline.

The remainder of a code is a, space, t, i, e, and newline.

Thus, it does not matter if

The character codes are different lengths, as long as No character code is a prefix of
another character code.

Such an encoding is known as prefix code.

Conversely, if a character is contained in a non-leaf node, it is no longer possible to
guarantee that the decoding will be unambiguous.

Lectures-27-28 Page 6 of 10

mailto:naseer@biit.edu.pk

Dr. Naseer Ahmed Sajid

Analysis of Algorithm

* Hence our basic problem is

email id: naseer@biit.edu.pk

¢ Find the full binary tree of minimal total cost, in which all
characters are contained in the leaves.

¢ The following tree is an optimal tree for our sample alphabet.

%

Charac | Code | Frequ | Total
ter ency | Bits
a 001 10 30
e 01 13 30
i 10 12 24
s 00000 3 15
t 0001 4 16

space 11 13 26

newline | 00001 1 3

WhatsApp# 0346-5100010

* There are many optimal code that can be obtained by

swapping children in the encoding tree.

e The main unresolved question is
e How the coding tree is constructed?
* Maintain a forest of trees with the weight of each

tree.

* The weight of the tree is equal to the sum of the
frequencies of its leaves.

e |f there are c leaves (different characters), at the

beginning there will be c single node trees.

Lectures-27-28

10

15

12

3
®

4
®

13

1
(@D

Page 7 of 10

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010
10 15 12 3 4 13 1
Select the two trees of smallest weights (T,, T,) and from a new tree with

sub-trees T, and T,.
Assign the weight to the root of the new tree.

10 15 12 4 13

@ @@ O ©O @ o
Repeat this process. At the end, there will be one tree which is the optimal
Huffman code tree

e It begins with a set of |c| leaves and performs a sequence of |c| - 1 merging operations to
create a final tree.

e In the pseudo code, assume that C is a set of n characters and that each character ¢ € C is an
object with a defined frequency fic|.

e A priority queue Q, keyed on f, is used to identify the two least-frequent objects to merge
together.

e The result of the merger of two objects is a new object whose frequency is the sum of the

frequencies of the two objects that were merged

Huffman (c)

n = [c| //initialize priority queue with character in ¢
Q=c
fori=1ton-1
do z = Allocate _ Node()
x = left[z] = Extract_Min(Q)
y = right[z] = Extract_Min(Q)
flz] = fIx] + flyl
Insert(Q, Z);
return Extract_Min(Q)

SO HND DA WN RS

e The for loop in an algorithm repeatedly extracts the two nodes x and y of lowest frequency

from the queue, and replaces them in the queue with a new node z representing their merger.

Lectures-27-28 Page 8 of 10

mailto:naseer@biit.edu.pk

Dr. Naseer Ahmed Sajid

Analysis of Algorithm

email id: naseer@biit.edu.pk

WhatsApp# 0346-5100010

e The frequency of z is computed as the sum of the frequencies of x and y in line 7.

e After n-1 merges, the one node left in the queue. The root of the code tree is returned.

Analysis of Huffman Coding Algorithm

« Assume that queue is implemented as a binary heap.

» For aset C of n character, the initialization of Q in line 2 can be performed in O(n) time.

» The for loop is executed exactly n-1 times.

« Within the loop each heap operation requires time O(log n).

» The loop contributes to O(nlogn).

» Thus the total running time of the Huffman algorithm is O(nlogn) for a set of n

characters.

Example

Data: U(250) , V(130) , W(120) , X(100) , Y(160) , Z(190)

Data Frequency Variable bits code Total Bits

U 250 10 500
\ 130 110 390
W 120 011 360
X 100 010 300
Y 160 111 480
Z 190 00 380

Total 2410

Lectures-27-28

Page 9 of 10

mailto:naseer@biit.edu.pk

Analysis of Algorithm

Dr. Naseer Ahmed Sajid email id: naseer@biit.edu.pk WhatsApp# 0346-5100010

Lectures-27-28 Page 10 of 10

mailto:naseer@biit.edu.pk

