Finite State Automata

What is Finite State Automata?

- It is a graph like structure also known as directed graph.
- Finite state automata (FSAs) sound complicated, but the basic idea is as simple as drawing a map.
- A finite-state automaton is a device that can be in one of a finite number of *states*.
- In certain conditions, it can switch to another state.
 - This is called a *transition*.
- When the automaton starts working (when it is switched on), it can be in one of its initial states.
- There is also another important subset of states of the automaton: the final states.
 - o If the automaton is in a final state when it stops working, it is said to *accept* its input. The input is a sequence of symbols.
- The interpretation of the symbols depends on the application; they usually represent events, or can be interpreted as ``the event that a particular data became available".
- The symbols must come from a finite set of symbols, called the *alphabet*.
- If a particular symbol in a particular state triggers a transition from that state to another one, that transition is *labeled* with that symbol.
 - The labels of transitions can contain one particular symbol that is in the alphabet.
 - O A transition is labeled with ε (not present in the alphabet) if it can be traversed with no input symbol.
- It is convenient to present automata as directed graphs.
- The vertices denote states.
- They are portrayed as small circles.
- The transitions form the edges arcs with arrows pointing from the source state (the state where the transition originates) to the target state.
- They are labeled with symbols. Unless it is clear from the context, the initial states have short arrows that point to them from ``nowhere".
- The final states are represented as two concentric circles.

Why to Study Finite State Automata?

- FSA is machine to model the regular languages.
- So, to model the problem belonging to regular language needs finite state automata

Applications

Finite Automata are widely used in:

- Lexical analyzers (compilers)
- **Text pattern searching** (like regex)
- Network protocol design
- Control systems
- Robotics and AI behavior modeling

Formal A Finite State Automaton (FSA) is a 5-tuple:

where:

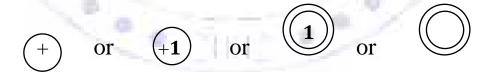
Symbol	Meaning	
Q	Finite set of states	
Σ (Sigma)	Finite set of input symbols (alphabet)	
δ (delta)	Transition function $\rightarrow \delta: Q \times \Sigma \rightarrow Q$	
qo	Start state (initial state), where the machine begins	
F	Set of final or accepting states, F⊆QF	

Notations Used to build FSA

• Sates are represented by only circles or circles having name inside it.

• Initial Sate is represented by circle having negative sign inside it or arrow symbol like

- Transitions having label from \sum o Transitions omits from states are called outgoing transitions for that particular state.
 - o Transitions comes to states are called incoming transitions.
- Final state or acceptance state is represented with double circle or positive sign inside.



How It Works

- The automaton **starts** in the start state q_0 .
- It **reads input symbols** one by one.
- For each symbol, it moves to the **next state** based on the transition function $\delta\delta\delta$.
- After all input is read, if it ends in a final (accepting) state, the input is accepted;
 otherwise, it is rejected.

Manual Conversion Steps

If you're drawing by hand or for an exam:

- 1. Start with smallest parts:
 - o $a \rightarrow single transition on 'a'$
 - \circ b \rightarrow single transition on 'b'
- 2. Apply rules:
 - o Concatenation (AB): connect end of A to start of B
 - ο Union (A|B): add a new start and end with ε-transitions
 - o Kleene star (A):* add loops using ε-transitions
- 3. **Combine** until full expression is represented.

(An **\varepsilon** transition) is a **move from one state to another without reading any input symbol.**)

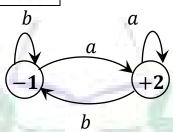
Example1: The language end on "a". $\Sigma = \{a, b\}$

$$R.E = (a + b)*a$$

Valid= {a, aa, ba, aba, baba....}

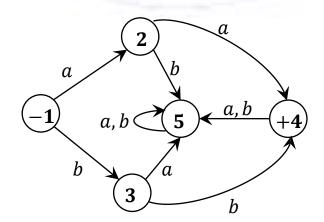
Transition Table

State	In outs		
diam.	a	b	
-1	2	1	
+2	2	1	



Example2: Language having words $\{aa, bb\}$ over $\sum = \{a, b\}$

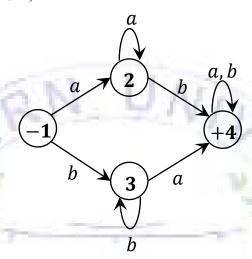
R.E = aa + bb



Example3: The language of all words that have at least one a and at least one b is somewhat trickier.

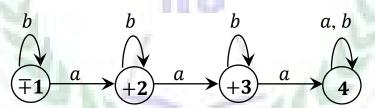
$$R.E=(a+b)*a(a+b)*b(a+b)* + (a+b)*b(a+b)*a(a+b)*$$

Valid={ab,ba,aab,bba,aba,bab,...}



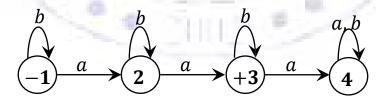
Example 4: The Language contain at most two a's defined over, $\Sigma = \{a, b\}$

R.E= b*+b*a b*+ b*a b*ab*



Example 5: The Language contain exact two a's defined over, $\Sigma = \{a,b\}$

RE=b*ab*ab*

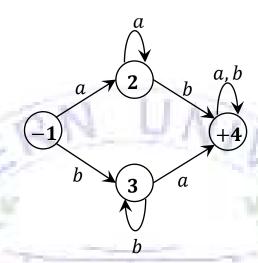


Example 6: The language contain substring ab or ba defined over, $\Sigma = \{a, b\}$

$$RE=(a+b)^*ab(a+b)^* + (a+b)^*ba(a+b)^*$$

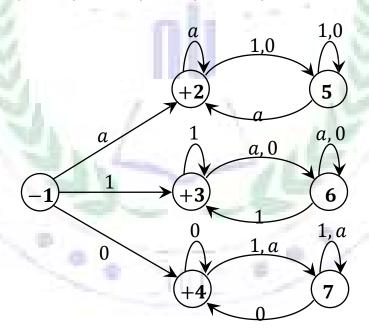
Or

$$RE=(a+b)^*(ab+ba)(a+b)^*$$



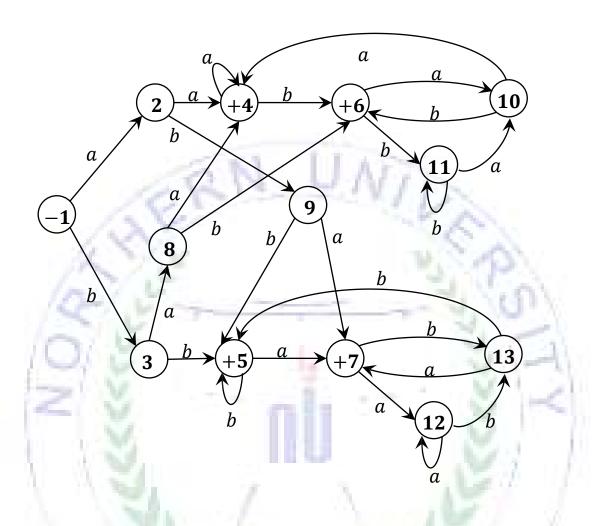
Example7: The language start and ends on same letter defined over $\Sigma = \{a, 1, 0\}$

$$RE=a(a+1+0)^*a+1(a+1+0)^*1+0(a+1+0)^*0+a+1+0$$

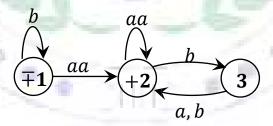


Example8: The language whose second and second last letter are same defined over $\Sigma = \{a, b\}$.

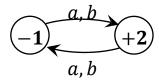
R.E=
$$(a+b)a(a+b)*a(a+b) + (a+b)b(a+b)*b(a+b)$$



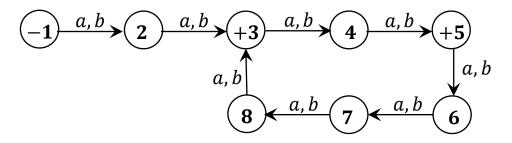
Example9: The language cannot end on 'ab' defined over, $\Sigma = \{a, b\}$



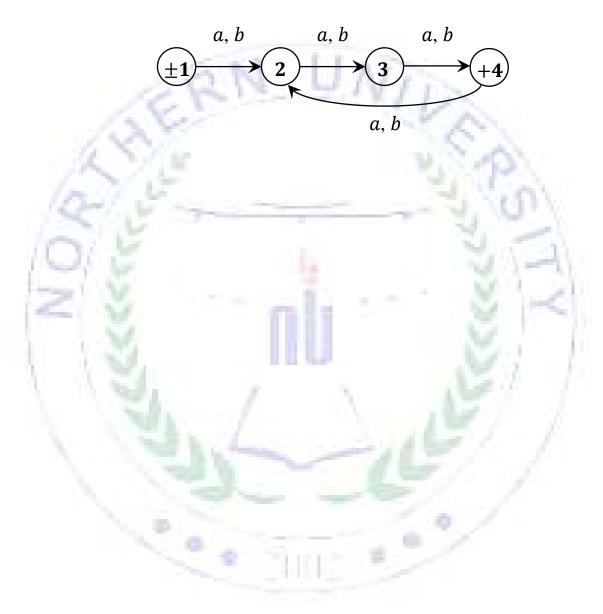
Example 10: The language cannot contain even length of word defined over, $\Sigma = \{0, 1, 2\}$



Example 11: The Language contain even length of word but not multiple of 3 defined over, $\Sigma = \{a,b\}$.



Example 12: The language contain word of length multiple of 3 defined over, $\Sigma = \{a,b\}$



Assignment No. 3

Note : All the languages are based on set of alphabets $\Sigma = \{a,b\}$

Question 1: Language of all words having at least two a's and 3 b's

Question 2: Language of all words which start with 'ab' and end with 'bb'

Question 3: Language of all words having even length

Question 4: Language of all words which contain substring 'ab.

Question 5: Language which has odd length but start with 'b'

Question 6: Language of all strings which has exact 1 'aaa' and must start with 'b'

Question 7: Language which accept length >= 2 and not end with 'aa' or 'bb'

