Finite State Automata

What is Finite State Automata?

« lItisagraph like structure also known as directed graph.
» Finite state automata (FSAs) sound complicated, but the basic idea is as simple as
drawing a map.
* A finite-state automaton is a device that can be in one of a finite number of states.
» In certain conditions, it can switch to another state.
o This s called a transition.
* When the automaton starts working (when it is switched on), it can be in one of its
initial states.
» There is also another important subset of states of the automaton: the final states.
o If the automaton is in a final state when it stops working, it is said to accept its
input. The input is a sequence of symbols.
« The interpretation of the symbols depends on the application; they usually represent
events, or can be interpreted as "the event that a particular data became available".
» The symbols must come from a finite set of symbols, called the alphabet.
« Ifa particular symbol.in a particular state triggers a transition from that state to
another one, that transition is labeled with that symbol.
o The labels of transitions can contain one particular symbol that is in the
alphabet.
o A transition is labeled with & (not present in the alphabet) if it can be traversed
with no input symbol.
» Itis convenient to present automata as directed graphs.
* The vertices denote states.
* They are portrayed as small circles.
* The transitions form the edges - arcs with arrows pointing from the source state (the
state where the transition originates) to the target state.
» They are labeled with symbols. Unless it is clear from the context, the initial states
have short arrows that point to them from ~“nowhere".
« The final states are represented as two concentric circles.

Why to Study Finite State Automata?

* FSA is machine to model the regular languages.
» S0, to model the problem belonging to regular language needs finite state automata

Applications
Finite Automata are widely used in:

o Lexical analyzers (compilers)

o Text pattern searching (like regex)
e Network protocol design

e Control systems

e Robotics and Al behavior modeling

Formal A Finite State Automaton (FSA) is a 5-tuple:

M=(Q, Z, 8, q0, F)
where:
Symbol | Meaning
Q | Finite set of states

X (Sigma) ||Finite set of input symbols (alphabet)

qo |/Start state (initial state), where the machine begins

| |
| |
| |
| 5 (delta) |Transition function — 5:QxZ—Q |
| |
| |

F HSet of final or accepting states, FEQF

Notations Used to build FSA

How

Sates are represented by only circles or circles having name inside it.

O o @

Initial Sate is represented by circle having negative sign inside it or arrow symbol
like

@or@or@or@

Transitions having label from) o Transitions omits from states are called outgoing
transitions for that particular state.

o Transitions comes to states are called incoming transitions.
Final state or acceptance state is represented with double circle or positive sign
inside.

@or@oror@

It Works

The automaton starts in the start state qo.

It reads input symbols one by one.

For each symbol, it moves to the next state based on the transition function 654.
After all input is read, if it ends in a final (accepting) state, the input is accepted;

otherwise, it is rejected.

Manual Conversion Steps

If you’re drawing by hand or for an exam:

1. Start with smallest parts:
o a— single transition on ‘a’
o b — single transition on ‘b’
2. Apply rules:
o Concatenation (AB): connect end of A to start of B
o Union (A|B): add a new start and end with e-transitions
o Kleene star (A):* add loops using e-transitions
3. Combine until full expression is represented.

(An e-transition (epsilon transition) is a move from one state to another without reading any input
symbol.)

Examplel: The language end on "a". X = {a, b}
R.E=(a+ b)*a
Valid= {a, aa, ba, aba, baba....}

Transition Table

State In uts
a b
-1 2 1
+2 2

N
S

Example2: Language having words {aa, bb} over Y = {a, b}
R.E=aa+ bb

Example3: The language of all words that have at least one a and at least one b is
somewhat trickier.

R.E= (at+b)*a(atb)*b(at+b)* + (a+b)*b(at+b)*a(a+b)*

Valid={ab,ba,aab,bba,aba,bab,...}

Example4: = The Language contain at most two a’s defined over, Y ={a, b}

R.E= b*+b*a b*+ b*a b*ab*

Example5: The Language contain exact two a’s defined over, > ={a,b}

RE=b*ab*ab*

Example6: The language contain substring ab or ba defined over, Y = {a, b}
RE=(a + b)'ab(a+ b)" + (a+ b) ba(a + b)"

Or
RE=(a + b)*(ab + ba)(a + b)"

Example7: The language start and ends on same letter defined over = {a, 1, 0}
REza(a+1+0)a+1(a+1+0)1+0@+1+0)0+a+1+0

1,0
1,0

Example8: The language whose second and second last letter are same defined over
X = {a, b}.

R.E= (a+b)a(a+b)* a(a+b) 4+ (a+b)b(a+b)* b(a+b)

Example9: The language cannot end on ‘ab’ defined over, > = {a, b}

b aa

[D

Examplel0: The language cannot contain even length of word defined over, Y = {0, 1, 2}
a,b

Examplell: The Language contain even length of word but not multiple of 3 defined
over, Y ={a,b}.

Examplel2: The language contain word of length multiple of 3 defined over, > ={a,b}

a, b a,b a, b
)—(2)—()—(s

a,b

Assignment No. 3

Note : All the languages are based on set of alphabets ~ = {a,b}

Question 1:
Question 2:
Question 3:
Question 4:
Question 5:
Question 6:

Question 7:

Language of all words having at least two a’s and 3 b’s

Language of all words which start with ‘ab’ and end with ‘bb’
Language of all words having even length

Language of all words which contain substring ‘ab.

Language which has odd length but start with ‘b’

Language of all strings which has exact 1 ‘aaa’ and must start with ‘b’

Language which accept length >=2 and not end with ‘aa’ or ‘bb’

