
Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

(Week 3) Lecture 5-6

Learning objectives:

 Understanding of Register Transfer & micro-operations

 Register transfer

 Bus and memory transfer

 Arithmetic microoperations

 Logic microoperations

 Shift microoperations

 (Note: It is important to note that we are considering “Basic computer architecture” processor

which we were discussing in the class and it’s the continuation of the same concepts).

Resources: Beside these lecture handouts, this lesson will draw from the following

Text Book: Computer System Architecture by Morris Mano (3rd Edition) and

Reference book:Computer Architecture, by William Stallings (4th Edition).

Lecture:

REGISTER TRANSFER AND MICROOPERATIONS

It focuses on the fundamental concepts related to how data is transferred between registers and the

various microoperations that can be performed within a computer system.

1. Register Transfer

The opertions executed on data stoed in registers are called microoperations. It is an elementary

operation performed on the information stored in one or more registers. It is possible to specify

the sequence of microoperations in a computer by explaining every operation in words, but this

procedure usually involve a lengthy descriptive explaination. The symbolic notation used to

describe the microoperation transfers among registes is called Register transfer language.

Computer registers are labeled with capital letters (and sometimes numbers) to show what each

register does. For example, the register that stores a memory address is called the Memory Address

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

Register (MAR). Other examples include the Program Counter (PC), Instruction Register (IR), and

Processor Register (RI).

Each register is made up of small storage units called flip-flops. If the register has n bits, these

flip-flops are numbered starting from 0 (on the right) to n - 1 (on the left). Figure 4-1 below shows

the representation of registers in block diagramn form.

 The most common way to represent a register is by a rectangular box with the name of the register

inside, as in Fig. 4-l(a). The individual bits can be distinguished as in (b). For example, in a 16-bit

register, the bits can be numbered above the box, from 0 to 15 (shown in part (c)). In part (d), the

16-bit register is divided into two parts: the low byte (bits 0-7, labeled "L") and the high byte (bits

8-15, labeled "H"). (for low byte) and bits & through 15 are assigned the symbol H(for high byte).

The name of the 16-bit register is PC. The symbol PC0-7) or PC(L) refers to the low-order byte

and PC(8-15) or PC(H) to the high-order byte.

The transfer from one register to another is written as:

R2 ← R1

It denotes a transfer of the content of register RI into register R2. It designates a replacement of

the content of R2 by the content of RI. By definition, the content of the source register Rl does not

change after the transfer.

Transfers usually happen under specific conditions controlled by signals. For example:

If (P = 1) then (R2 ← R1)

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

 Here, P is a control signal, and the transfer occurs only if P is 1 (active). A control function is a

simple on/off signal (either 1 or 0) that tells the system when to perform the transfer. This can also

be written as:

P: R2 ← R1

Meaning, if P is 1, then the transfer happens.

Every time a register transfer statement is written, it implies that there is hardware built to make

that transfer happen. Figure 4-2 shows how data is transferred from R1 to R2. The number of bits

in the registers is indicated by n, and this will be replaced by the actual number once the register

size is known.

R2 has a load input, which is controlled by a signal P. This signal works in sync with the clock.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

According to the timing diagram, P gets activated by the rising edge of a clock pulse at time t. The

actual transfer into R2 happens on the next clock pulse at t+1 when the load input is active,

allowing data to move from R1 to R2 in parallel (all bits at once).If P goes back to 0 after t+1, the

transfer stops. But if P stays active, the transfer will continue with each clock pulse.Although the

clock is not mentioned directly in the register transfer statement, it's assumed that all ransfers

happen at a clock edge. Even if P becomes active right after time t, the transfer won’t occur until

the next clock pulse at t+1.

2. Bus and Memory Transfer

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

A typical digital computer has many registers, and there needs to be a way to transfer data between

them. If each register were connected to all the others using separate wires, it would require too

many wires. A more efficient method is to use a common bus system. A bus system is a set of

shared lines, with one line for each bit of data, used to transfer information between registers one

at a time. Control signals decide which register sends data to the bus during each transfer.

One way to build a bus system is with multiplexers (MUX). Multiplexers choose which register’s

data is placed on the bus. The figure (Fig. 4-3) shows a bus system for four registers, each with 4

bits (labeled 0 to 3). There are four multiplexers, each with four data inputs and two selection

inputs. Instead of showing 16 crossing wires, labels are used to show connections. For example,

the first output of register A connects to the first input of multiplexer MUX 0.

Each multiplexer handles the same bit position across all registers. MUX 0 handles the first bit

(bit 0) of all four registers. MUX 1 handles the second bit (bit 1), and so on for the other bits.

This way, data from any register can be selected and sent through the bus by the multiplexers.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

The two selection lines, S₁ and S₀, control which register’s data is transferred to the common bus.

For example, when S₁S₀ = 00, the data from register A is sent to the bus. Similarly, other

registers like B are selected based on the values of S₁S₀. Table 4-2 shows the register that is

selected by the bus for each of the four possible binary value of the selection lines.

A bus system uses multiplexers to select and transfer data from multiple registers. For k registers

with n bits, n multiplexers are needed, each having k data inputs. The transfer of information from

a bus into one of many destination registers can be accomplished by connecting the bus lines to

the inputs of all destination registers and activating the load control of the particular destination

register selected. The symbolic statement for a bus transfer may mention the bus or its presence

may be implied in the statement.The symbolic statement for a bus transfer may mention the bus or

its presence may be implied in the statement. When the bus is incudes in the statement, the register

transfer is symbolized as follows:

BUS ← C, R1 ← BUS

The content of register C is placed on the bus, and the bus content is loaded into register R1 by

activating its load control input, which can be simplified to showing the direct transfer as:

R1 ← C

Three-State Bus Buffers

A bus system can be built using three-state gates instead of multiplexers. A three-state gate has

three output states: logic 1, logic 0, and a high-impedance (disconnected) state. The high-

impedance state acts like an open circuit, meaning the output is disconnected and does not have a

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

logic significance. Three-state gates may perform any conventional logic such as AND or NAND.

However, the most common three-state gate used in bus systems is the buffer gate.

The graphic symbol of a three-state buffer gate is shown in Fig. 4-4.

The three-state buffer is distinguished from a normal buffer by having both a normal input and a

control input. The control input determines the output state. When the control input is 1, the buffer

behaves normally, passing the input to the output. When the control input is 0, the output goes to

high impedance, effectively disconnecting from the bus. This allows multiple buffers to connect

to the same bus line without interference.

The construction of a bus system with three-state buffers is demonstrated in Fig. 4-5. In a bus

system using three-state buffers, the outputs of multiple buffers (e.g., four buffers) are connected

to a single bus line. Only one buffer can be active at a time, while others remain in a high-

impedance (disconnected) state. This prevents interference between multiple buffers.

To ensure only one buffer is active, a decoder is used. When the decoder's enable input is 0, all

buffers are disabled, and the bus remains in a high-impedance state. When the enable input is 1,

the decoder selects one buffer based on its inputs to communicate with the bus.

To create a bus for four registers with n bits each, you need n sets of four buffers, where each set

handles a specific bit from the registers. A single decoder controls which register is selected to

communicate with the bus.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

Memory Transfer

The memory unit performs two main operations: read and write. In a read operation, data is

transferred from a specific memory word (M) to a register. The memory word is chosen by its

address (stored in the address register, AR). The read operation can be written as:

Read: DR ← M[AR]

This causes a transfer of information into DR from the memory word M selected by the address in

AR. The write operation transfers the content of a data register to a memory word M selected by

the address. Assume that the input data are in register R1 and the address is in AR.

Write: M[AR] ← R1

3. Arithmetic Microoperations

The basic arithmetic microoperations are addition, subtraction, increment, decrement, and shift.

The arithmetic microoperation defined by the statement specifies an add operation.

R3 ← R1 + R2

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

Some of the other arithmetic microoperations are listed in Table 4-3.

Binary Adder

To perform an addition operation in hardware, we need registers to hold data and a digital

component for the arithmetic process. The basic circuit for adding two bits and a carry is called a

full-adder. A binary adder adds two binary numbers and is built by connecting full-adders in a

chain.

For example, a 4-bit binary adder has four full-adders connected, where the carry output of each

adder is linked to the carry input of the next one. The data bits (A and B) come from two registers

(like R1 and R2), and the sum can be stored in another register or overwrite one of the source

registers. An n-bit binary adder requires n full-adders.

Binary Adder-Subtractor

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

Binary subtraction can be done easily using 2's complement. To subtract A - B, we take the 2's

complement of B and add it to A. The 2's complement is found by taking the 1's complement

(inverting the bits) and adding 1 to the result.

An adder-subtractor circuit combines addition and subtraction. It uses exclusive-OR gates along

with full adders. The mode input (M) controls the operation:

 When M = 0, the circuit performs addition (A + B).

 When M = 1, it complements B and performs subtraction (A - B) by adding A to the 2's

complement of B.

For unsigned numbers, the result will be A - B (if A > B) or the 2's complement of (B - A) (if A <

B).

Binary Incrementer

A binary incrementer adds 1 to a number stored in a register. For example, a 4-bit number 0110

becomes 0111 after being incremented. This can be done using a binary counter, which increases

the value by 1 every time a clock pulse occurs. Sometimes, you need to increment a number

without using a specific register. In that case, a combinational circuit made of half-adders can be

used. A 4-bit binary incrementer uses a series of half-adders where the least significant bit (LSB)

is connected to logic-1. As the bits are incremented, the carry from each half-adder moves to the

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

next higher bit. This circuit can be expanded to handle any number of bits by adding more half-

adders.

Arithmetic Circuit

An arithmetic circuit can perform different arithmetic operations using a single setup. The main

part of this circuit is the parallel adder, which adds binary numbers. By controlling the inputs to

the adder, various operations can be done.

In a 4-bit arithmetic circuit:

 There are two 4-bit inputs, A and B, and a 4-bit output, D.

 The inputs from A go directly into the adder, while B goes through multiplexers, which

can select B, B's complement, 0, or 1.

 The adder combines A, a controlled version of B, and a carry input (C_in) to produce the

output.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

The final output is calculated using the formula:

D = A + Y + Cin

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

Where A is the 4-bit binary number at the X inputs andY is the 4-bit binary number at the Y

inputs of the binary adder. C is the input carry, which can be equal to 0 or 1. By adjusting the

control inputs and carry, the circuit can perform eight different arithmetic operations. Listed in

the given table.

4. Logic microoperations

Logic microoperations specify binary operations for strings of bits stored in registers. These

operations consider each bit of the register separately and treat them as binary variables. For

example, the exclusive-OR microoperation with the contents of two registers R1 and R2 is

symbolized by the statement

P: R1 ← R1 ⊕ R2

It specifies a logic microoperation to be executed on the individuai bits of the registers provided

that the control variable P=1. As a numerical example, assume that each register has four bits.

Let the content of R1 be 1010 and the content of R2 be 1100, The exclusive-OR microoperation

stated above symbolizes the following logic computation:

1010 Content of R1

1100 Content of R2

0110 Content of RI after P= 1

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

The content of R1, after the execution of the microoperation, is equal to the bit-by-bit

exclusive-OR operation on pairs of bits in R2 and previous values of R1. The logic

microoperations are seldom used in scientific computations, but they are very useful for bit

manipulation of binary data and for making logical decisions.

List of Logic microoperations

There are 16 different logic operations that can be performed with two binary variables. They

can be determined from all possible truth tables obtained with two binary variables as shown

in Table 4-5. In this table, each of the 16 columns F0 through F15 represents a truth table of one

possible Boolean function for the two variables x and y.

The 16 Boolean functions are expressed in algebraic form in the first column of Table 4-6. The

16 logic microoperations are derived from these functions by replacing variable x by the binary

content of register A and variable y by the binary content of register B. It is important to realize

that the Boolean functions listed in the first column of Table 4-6 represent a relationship

between two binary variables x and y. The logic microoperations listed in the second column

represent a relationship between the binary content of two registers A and B. Each bit of the

register is treated as a binary variable and the microoperation is performed on the string of bits

stored in the registers.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

5. Shift microoperations

Shift microoperations are used for serial transfer of data and are also applied with arithmetic, logic,

and other data operations. Data in a register can be shifted either to the left or right. When bits are

shifted, the first flip-flop receives a new bit from the serial input. In a shift-left operation, a bit is

transferred into the rightmost position, and in a shift-right operation, a bit is transferred into the

leftmost position. The type of shift depends on the serial input. There are three types of shifts:

logical, circular, and arithmetic. A logical shift is one that transfers 0 through the serial input.

We will adopt the symbols shl and shr for logical shift-left and shift-right microoperations.

 R1 ← shl R1

 R2 ← shr R2

are two microoperations that specify a 1-bit shift to the left of the content of register RI and a 1-

bit shift to the right of the content of register R2. The reigister symbol must be the same on both

sides of the arrow. The bit transferred to the end position through the serial input is assumed to be

0 during a logical shift .

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

In a circular shift (or rotate), bits are rotated around the register without losing any information.

The serial output is connected to the serial input, and we use the symbols cil and cir for circular

left and right shifts. The symbolic notation for these shift microoperations is provided in Table 4-

7.

An arithmetic shift is a microoperation that shifts a signed binary number either left or right. An

arithmetic shift-left multiplies the number by 2, while an arithmetic shift-right divides it by 2. The

sign bit, which determines whether the number is positive or negative, must remain unchanged

during the shift since the sign doesn't change with multiplication or division by 2.

In Figure 4-11, the leftmost bit (Rₙ₋₁) is the sign bit, while the rest of the bits hold the actual

number.

For arithmetic shift-right, the sign bit stays the same, and the rest of the bits are shifted to the right,

with the rightmost bit being lost. For arithmetic shift-left, a 0 is inserted into the least significant

bit (R₀), and the other bits are shifted left. If the sign bit changes after the shift, it means there's an

overflow. An overflow occurs when Rₙ₋₁ is different from Rₙ₋₂ before the shift.

An overflow flip-flop V can detect this condition:

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

Vs = Rₙ₋₁ ⊕ Rₙ₋₂

If Vs = 1, it indicates an overflow and a possible sign change. If Vs = 0, there's no overflow. The

value of Vs is transferred to the overflow flip-flop during the shift.

·

mailto:abdul@northern.edu.pk

