Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

(Week 5) Lecture 9-10

Learning objectives:

e Review of the last lecture

e Determine different types of instructions

e Understand the concept of register reference instruction

e Understand how memory reference instructions are executed

(Note: It is important to note that we are considering “Basic computer architecture” processor
which we were discussing in the class and it’s the continuation of the same concepts. Another
important point is that brief part of the last lecture is repeated. Audio clip will be sent separately
for every diagram.)

Resources: Beside these lecture handouts, this lesson will draw from the following

Text Book: Computer System Architecture by Morris Mano (3™ Edition) and
Reference book:Computer Architecture, by William Stallings (4™ Edition).

Lecture:
INSTRUCTION CYCLE

This section presents the steps an instruction needs to follow during its execution process.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

BC Instruction cycle: [Fetch Decode [Indirect] Execute]*

« Fetch and Decode |T0: AR — PC (S05152=010, T0=1)
T1: IR MI[AR], PC«— PC+1 (S081S2=111, T1=1)
T2: DO, ..., D7 « Decode IR(12-14), AR « IR(0-11), | «— IR(15)

T - 1 i:)— 52
TO 51 Bus
S0
-

Memory >l
unit -

i: 1 [Read

)
o

»[PcC 2

:hmll b4

LD Clock

T T TS

Y

Address

Namely they are as follow:

Fetching an instruction
Decoding the instruction

Evaluate the effective address

M w0 p e

Execution

Each instruction has to pass thru these steps. Now we see these steps one by one.
In fetch phase following tasks performed.

To: AR <« PC (initial address is sent to address register from program counter)

T1: IR« M[AR], PC «— PC +1(memory address value at AR sent IR, PC incremented)

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

Now to decode we go to next time signal T,

T2: Dy,......., D, < DecodelR(12—14), AR « IR(0—11), | « IR(15)

Here the bits 12-14 (opcode) is decoded to the one out of eight levels, also bits of IR from 0-11
(address part) is sent to AR, and 15" bit of IR is sent to | bit. Further timing slots are responsible

for execution of the instruction.
TYPE OF INSTRUCTION

This section deals with circuitry which distinguish the type of instruction from the instruction
register contents. As we have described earlier that all three type of instructions; memory

reference, register reference and 1/0O have their own distinctions.

Start
SC 0

L
I AR « PC IT{I
T1

lIR « MIAR], PC &« PC +1 |

T2
Decode Opcode in IR{12-14),
AR « IR[0-11), |+ IR{15)
(Register or /O =0 (Memory-reference)
(o) =1 = () (register) {indirect (direct)

L T3 b h
Execute Execute |AR<—M[AR]| Ithing |
input-output register-referance 4 ‘
instruction instruction
SC« 0 SC «— 0 Execute T4
memory-reference
instruction
SC « 0
. +

D'7IT3: AR <« M[AR]

D'7I'T3: Nothing

D7I'Ta: Execute a register-reference instr.
D7ITa: Execute an input-output instr.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

From the flowchart given above we can easily understand the type of instruction with respect to

time signal associated.

The timing signal that is active after the decoding is T3. During time T3 the control unit
determines the type of instruction that was just read from memory.. The three possible
instruction types available in the basic computer are specified in Figure above. Decoder output
D, is equal to 1 if the operation code is equal to binary figure we determine that if D7 = I, the
instruction must be a effective address from memory. The microoperation for the indirect address

condition can be symbolized by the register transfer statement
AREMIAR]

Initially, AR holds the address part of the instruction. This address is used during the memory
read operation. The word at the address given by AR is read from memory and placed on the
common bus. The LD input of AR is then enabled to receive the indirect address that resided in
the 12 least significant bits of the memory word. The three instruction types are subdivided into
four separate paths. The selected operation is activated with the clock transition associated with

timing signal T3. This can be symbolized as follows:
D7T3: AREM[AR]
D7T3: Nothing
D7T3: Execute a register-reference instruction
D7T3: Execute an input-output instruction

When a memory-reference instruction with I = 0 is encountered, it is not necessary to do
anything since the effective address is already in AR. However, the sequence counter SC must be
incremented when D7T3 = 1, so that the execution of the memory-reference instruction can be
continued with timing variable T4. A register-reference or input-output instruction can be
executed with the clock associated with timing signal T3. After the instruction is executed, SC is

cleared to 0 and control returns to the fetch phase with TO = 1. Note that the sequence counter SC

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

is either incremented or cleared to 0 with every positive clock transition. We will adopt the
convention that if SC is incremented, we will not write the statement SC <-SC + 1, but it will be
implied that the control goes to the next timing signal in sequence. When SC is to be cleared, we
will include the statement SC <-0. The register transfers needed for the execution of the register-

reference instructions are presented in this section.

REGISTER-REFERENCE INSTRUCTIONS

Register-reference instructions are recognized by the control when 07 = 1 and | = 0. These
instructions use bits 0 through 11 of the instruction code to specify one of 12 instructions. These
12 bits are available in IR(0-11). They were also transferred to AR during time T2. The control
functions and microoperations for the register-reference instructions are listed in the Table
below. These instructions are executed with the clock transition associated with timing variable
T3. Each control function needs the Boolean relation D7I'T3, which we designate for
convenience by the symbol r. The control function is distinguished by one of the bits in IR(0-11).
By assigning the symbol B, to bit i of IR, all control functions can be simply denoted by rB;. For
example, the instruction CLA has the hexadecimal code 7800 (see Table 5-2), which gives the
binary equivalent 0111 1000 0000 0000. The first bit is a zero and is equivalent to I'. The next
three bits constitute the operation code and are recognized from decoder output D7. Bit 11 in IR
is | and is recognized from B11. The control function that initiates the microoperation for this
instruction is D7I'T3B11 = rB11. The execution of a register-reference instruction is completed
at time T3. The sequence counter SC is cleared to 0 and the control goes back to fetch the next

instruction with timing signal TO.

MEMORY REFERENCE INSTRUCTIONS

These are the instructions which have commonly the code D7” which shows that opcode is other
than 111. Further the ‘7’ bit shows the direct or indirect instruction.

Following is the list of such instructions.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217
Symbol gzs;?jg?n Symbolic Description
AND D, AC <« AC AM[AR]
ADD D, AC«— AC+M[AR],E«C_,
LDA | D, AC «— MIAR]
STA | D; M[AR] « AC
BUN D, PC « AR
BSA D, M[AR] « PC,PC <« AR+ 1
ISZ D, M[AR] « M[AR] + 1, if M[AR] + 1 =0 then PC « PC+1

- The effective address of the instruction is in AR and was placed there during
timing signal T, when | = 0, or during timing signal T3 when 1 =1

- Memory cycle is assumed to be short enough to complete in a CPU cycle

- The execution of MR Instruction starts with T,

AND to AC
D,T,; DR« M[AR] Read operand
D,T.: AC«— ACADR,SC« 0 AND with AC
ADD to AC
D,T,; DR« M[AR] Read operand

D,T.: AC—AC+DR,E«C_ ,SC« 0 AddtoACandstorecarryinE

out?
This is carried out with the timing slots needed.

LDA: Load to AC
D,T,: DR« M[AR]
D,T.: AC«—DR,SC«0
STA: Store AC
D.T,: M[AR] « AC,SC « 0
BUN: Branch Unconditionally
D, T, PC«—AR,SC«0
BSA: Branch and Save Return Address
M[AR] « PC, PC « AR + 1

Memory, PC, AR at time T4 Memory, PC after execution
20 (0 BSA 135 20 |0 BSA 135
PC =21 | Next instruction 21 | Nextinstruction
AR =135 135 21
136 Subroutine PC = 136 Subroutine
1 BUN 135 1 BUN 135
Memory Memory

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217
BSA:
D.T,, M[AR] < PC, AR« AR +1
D.T.: PC«—AR,SC« 0

575
ISZ: Increment and Skip-if-Zero
DT, DR« M[AR]
D;T.;: DR« DR+1
D;T;: M[AR] « DR, if (DR =0)then (PC«+ PC+1), SC« 0

Here branch instructions are of particular interest. If branch is unconditional then in that case we
need not to store the return address; while if BSA is the instruction which means branch with
saving return address. And after that branch is completed control is returned back to next line

branch was occurred. That is demonstrated in figure above.

Following is given a complete flowchart of execution of memory reference instructions, with the

type of instruction and timing signal associated.

mailto:abdul@northern.edu.pk

Mr. Abdul Rehman

Computer Architecture ECS-355

email id: abdul@northern.edu.pk

Memory-refe

rjnce instruction

Whatsapp# 0308-7792217

AND ADD A STA
l Do T4 j DyT4 4 DTy 4 Daly
R <-maR] | [or < miar] | [or < mpar MIARI < AC I
DpTs j DyTs v D75
AC <- AC o DR AC <. AC +DR AC <-DR
SC <-0 E <-Cout SC <-0
SC=_10
BUN BSA Z
l DTy j DeTy DgTy
PC < AR Ll MIAR] <-PC | |DR <- M[AR]
SC <0 AR <- AR + 1
j DgTs l D

PC <- AR
SC <-0

DR <-DR +1

l

ﬁiﬁ

DeTg

M[AR] =- DR

IfiDR =10}

then (PC <-PC +1)
SC <-0

D507y = r (common to all register-reference instructions)

IR(i) = B, [bit in IR(0-11) that specifies the operation]

r. SC+0 Clear SC
CLA rBy: AC+0 Clear AC
CLE rByz: E+«0 Clear E
CMA rB;: AC<AC Complement AC
CME rBy E<«E Complement E
CIR rB; AC«shr AC, AC(15)«E, E«AC(0) Circulate right
CIL By AC<shl AC, AC(0)«E, E—AC(15) Circulate left
INC rBs: AC+—AC+1 Increment AC
SPA rBg: If (AC(15) = 0) then (PC<—PC + 1) Skip if positive
SNA rB,: If (AC(15) = 1) then (PC+—PC +1) Skip if negative
SZA 1By If (AC = 0) then PC«PC + 1) Skip if AC zero
SZE By I (E =0) then (PC«PC + 1) Skip if E zero
HLT rBy;: S§<0(S is a start—stop flip-flop) Halt computer

mailto:abdul@northern.edu.pk

