Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

(Week 06) Lecture 11-12
INPUT/OUTPUT INSTRUCTIONS

These are the instruction specified by D7l means when opcode = 111 and I=1. These are
instruction deals with 1/0 devices like keyboard, printers, scanners etc. These are given by the

flowing table.

D,IT,=p
IR()=B,,i=6, ..., 11

INP | pB,,: AC(0-7) « INPR, FGl <0 Input char. to AC
OUT | pB,;: OUTR « AC(0-7), FGO « 0 Output char. from AC
SKI | pB,: if(FGlI=1)then (PC« PC +1) Skip on input flag
SKO | pB;: if(FGO =1) then (PC « PC + 1) Skip on output flag
ION | pB;: IEN «1 Interrupt enable on
IOF | pB;: IEN <0 Interrupt enable off

A Terminal with a keyboard and a Printer

+ Input-Output Configuration

INPR Input register - 8 hits
OUTR OQutput register - 8 bits
FGI Input flag - 1 bit

FGO Output flag - 1 bit

IEN Interrupt enable - 1 bit

Input-output
terminal

Printer

Keyboard

comrr?&rrliiglation registers and
interface %ilapr? ,:t‘,;‘.ij
Receiver
interface GUTR
[ac |
Fy

Transmitter
* interface INPR @

— Serial Communications Path
== Parallel Communications Path

- The terminal sends and receives serial information

- The serial info. from the keyboard is shifted into INPR
- The serial info. for the printer is stored in the OUTR

- INPR and OUTR communicate with the terminal

serially and with the AC in parallel.

- The flags are needed to synchronize the timing
difference between /O device and the computer

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

INTERRUPTS

It very interesting to note that out I/O devices are very slow in response while the CPU’s
response time is in MICRON. So, if the CPU waits for the 1/O device to get ready or
send/receive some data, it has to wait a long and also in the mean while it remains idol. So, to get
rid of this situation we introduce a routine called interrupt. As its name is concerned is a knock
to the CPU door, after receiving interrupt enable signal by IEN flag, CPU handles the interrupt

and again get busy in other tasks.

INTERRUPT CYCLE
From the occurrence of an interrupt to its end called interrupt cycle. It obviously contains the
same steps we already have been discussed. Mainly from invoking an interrupt, invoking the
CPU for interrupt, handling the interrupt and returning back the control.
It can further be categorized as following.
e Open communication only when some data has to be passed --> interrupt.
e The I/O interface, instead of the CPU, monitors the I/O device.
e When the interface finds that the 1/0 device is ready for data transfer, it generates an
interrupt request to the CPU
e Upon detecting an interrupt, the CPU stops momentarily the task it is doing, branches to
the service routine to process the data transfer, and then returns to the task it was
performing
* IEN (Interrupt-enable flip-flop)
e can be set and cleared by instructions
e when cleared, the computer cannot be interrupted
e The interrupt cycle is a HW implementation of a branch and save return address
operation
e At the beginning of the next instruction cycle, the instruction that is read from memory is
in address 1
e At memory address 1, the programmer must store a branch instruction that sends the

control to an interrupt service routine

mailto:abdul@northern.edu.pk

Mr. Abdul Rehman

Computer Architecture ECS-355

email id: abdul@northern.edu.pk

Whatsapp# 0308-7792217

e The instruction that returns the control to the original program is ‘indirect BUN 0’

Instruction cycle

i
=]
LY

“~ =1

L

Fetch and decode
instruction

Execute
instruction

Interrupt cycle

Y

Store return address
in location 0
M[0] — PC

Y

Branch to location 1
PC— 1

/EN ~— 0
R—0

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

COMPLETE COMPUTER DESCRIPTION

After discussing each and every component explicitly, now we are able to put all the things
together to build a complete basic computer. Following is the complete schema for the said
scenario.

Start
SC~ 0, /N~ 0, R~ 0

(Instruction cycle) = 0 5 » ’~ = 1 (Interrupt cycle)
RTo S RTs
AR~ PC AR« 0, TR~ PC
RT RT;
;m- M| AR). PC+- PC + 1 | MIAR)| « TR, PC+ 0
RT: RT;
AR« IR(0O-11), I« IR(1S) PC PCH)V, IEN~ O
Dy - D; « Decode /R(12-14) R« 0, SC~— 0
X
(Register or 1/O) = 1 Dy N 0 (Memory-reference)
. ; b 4
(/0) =1 _ g 0 (register) (indirect) = 1 _ ‘I - = 0 (direct)
v O T v o' T v D311 v D31' N
! . :
Execute _ Execute ‘ AR« MIAR] Nothing
Input-output Register-reference : !] [4
Instruction Instruction
(Table 5-5) (Table 5-3)
: - Y Y
Execute
Memory-reference
Instruction
(Fig 5-11)
\ \J Y

This was complete flowchart of operations. Now the micro-operations associated with each step

are discussed at the next page.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

e The way that the interrupt is handled by the computer can be explained by means of
the flowchart of Fig. above. An interrupt flip-flop R is included in the computer. When R
=0, the computer goes through an instruction cycle.

« During the execute phase of the instruction cycle IEN is checked by the control. If it is
0, it indicates that the programmer does not want to use the interrupt, so control continues
with the next instruction cycle. If IEN is 1, control checks the flag bits.

« If both flags are 0, it indicates that neither the input nor the output registers are ready for
transfer of information. In this case, control continues with the next instruction cycle. If
either flag is set to 1 while IEN =1, flip-flop R is set to 1.

o At the end of the execute phase, control checks the value of R, and if it is equal to 1, it
goes to an interrupt cycle instead of an instruction cycle. The interrupt cycle is a
hardware implementation of a branch and save return address operation.

e The return address available in PC is stored in a specific location where it can be found
later when the program returns to the instruction at which it was interrupted.

e This location may be a processor register, a memory stack, or a specific memory
location. Here we choose the memory location at address O as the place for storing the
return address. Control then inserts address 1 into PC and clears IEN and R so that no
more interruptions can occur until the interrupt request from the flag has been serviced.

e An example that shows what happens during the interrupt cycle is shown in Fig. below.
Suppose that an interrupt occurs and R is set to 1 while the control is executing the
instruction at address 255. At this time, the return address 256 is in PC.

e The programmer has previously placed an input-output service program in memory
starting from address 1120 and a BUN 1120 instruction at address 1. This is shown in
Part (a) in Fig. below. When control reaches timing signal To and finds that R = 1, it
proceeds with the interrupt cycle.

e The content of PC (256) is stored in memory location 0, PC is set to 1, and R is cleared
to 0. At the beginning of the next instruction cycle, the instruction that is read from
memory is in address 1 since this is the content of PC.

e The branch instruction at address 1 causes the program to transfer to the input-output
service program at address 1120. This program checks the flags, determines which flag is
set, and then transfers the required input or output information.

e Once this is done, the instruction ION is executed to set IEN to 1 (to enable further
interrupts), and the program returns to the location where it was interrupted. This is
shown in Part (b) in Fig. below.

e The instruction that returns the computer to the original place in the main program is a
branch indirect instruction with an address part of 0. This instruction is placed at the end
of the UO service program.

o After this instruction is read from memory during the fetch phase, control goes to the
indirect phase (because | = 1) to read the effective address.

mailto:abdul@northern.edu.pk

Mr. Abdul Rehman

Computer Architecture ECS-355

email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

e The effective address is in location 0 and is the return address that was stored there
during the previous interrupt cycle. The execution of the indirect BUN instruction results
in placing into PC the return address from location 0.

Fetch
Decode

Indirect
Interrupt

T0'T1°T2'(IEN)(FGI + FGO):
RTO:

R'TO:
R'T1:
R'T2:

D7IT3:

RT1:
RTZ:

Memory-Reference

AND
ADD
LDA
STA
BUN
BSA

ISZ

D0T4:
DOT5:
D1T4:
D1TS:
D2T4:
D2T5:
D3T4:
D4T4:
D5T4:
D5TS:
D6T4:
D6TS:
D6T6:

Register-Reference

CLA
CLE
CMA
CME
CIR
CIL
INC
SPA
SNA
SZA
SZE
HLT

Input-Output

INP
ouT
SKI
SKO
ION
IOF

D7I'T3=r
IR(i) = Bi
r:
rB11:
rB10:
rB9:
rBsa:
rB7:
rBe6:
rB5:
rB4:
rB3:
rB2:
rg1:
rBo:

D7IT3=p
IR(i) = Bi

p:
pB11:
pB10:

pB9:
pB8:
pB7:
pB&:

AR <-PC

IR <- M[AR], PC <-PC +1

DO, ..., D7 <- Decode IR(12 ~ 14),
AR <-IR(0 ~ 11), I <- IR(15)

AR <- M[AR]

R <-1
AR <-0, TR <- PC

M[AR] <- TR, PC <- 0

PC <-PC+1,IEN <-0, R <-0, SC <- 0

DR <- M[AR]

AC <-AC.DR,SC <-0

DR <- M[AR]

AC =- AC+DR, E <- Cout, SC <-0
DR <- M[AR]

AC <-DR, SC <-0

M[AR] <- AC, SC <-0

PC <-AR,SC<-0

M[AR] <-PC, AR <- AR +1

PC <-AR,SC<-0

DR <- M[AR]

DR <-DR +1

M[AR] <- DR, if(DR=0) then (PC <-PC + 1),
SC=-0

(Common to all register-reference instr)
(i=01,2, .., 11)

SC=<-0

AC <-0

E<-0

AC <- AC

E=-FE

AC <-shr AC, AC(15) <-E, E <- AC(0)
AC <-shl AC, AC(0) <-E, E <- AC(15)
AC <-AC +1

If(AC(15) =0) then (PC <-PC +1)
If(AC(15) =1) then (PC <-PC +1)
If{AC = 0) then (PC <- PC + 1)

If(E=0) then (PC <- PC + 1)

S$<-0

(Commeon to all input-output instructions)
(i =6,7,8,9,10,11)

SC<-0

AC(0-7) <=-INPR, FGI <-0

OUTR =<- AC(0-7), FGO <-0

If(FGI=1) then (PC <-PC + 1)

If{FGO=1) then (PC <-PC +1)

IEN =-1

IEN <-0

mailto:abdul@northern.edu.pk

