
Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

1

(Week 8) Lecture 15-16

Learning objectives:

 Review of the last lecture

 Microinstruction format

 Fetch Routine

 Symbolic microprogram

(Note: It is important to note that we are considering “Basic computer architecture” processor

which we were discussing in the class and it’s the continuation of the same concepts. Another

important point is that brief part of the last lecture is repeated. Audio clip will be sent separately

for every diagram.)

Resources: Beside these lecture handouts, this lesson will draw from the following

Text Book: Computer System Architecture by Morris Mano (3rd Edition) and

Reference book:Computer Architecture, by William Stallings (4th Edition).

Lecture:

Microinstruction format:

This section introduces microinstruction of the control unit micro program. For the reference

User program instruction ‘Machine instruction’ format is also presented which is different from

the Microinstruction.

The microinstruction format for the control memory is shown in Figure below. The 20 bits of the

microinstruction are divided into four functional parts. The three fields F1, F2, and F3 specify

microoperations for the computer. The CD field selects status bit conditions. The BR field

specifies the type of branch to be used. The AD field contains a branch address. The address

field is seven bits wide, since the control memory has 128 = 27 words. The microoperations are

subdivided into three fields of three bits each. The three bits in each field are encoded to specify

seven distinct microoperations as listed in Table 7-1. No more than three microoperations can be

chosen for a microinstruction, one from each field. If fewer than three microoperations are used,

one or more of the fields will use the binary code 000 for no operation.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

2

The nine bits of the microoperation fields will then be 000 100 101. It is important to realize that

two or more conflicting microoperations cannot be specified simultaneously. For example, a

microoperation field 010 001 000 has no meaning because it specifies the operations to clear AC

to 0 and subtract DR from AC at the same time.

Microinstructions fields:

Each microoperation in Table presented belows is defined with a register transfer statement and

is assigned a symbol for use in a symbolic microprogram. All transfer-type microoperations

symbols use five letters. The first two letters designate the source register, the third letter is

always a T, and the last two letters designate the destination register. For example, the

microoperation that specifies the transfer AC <- DR (F1 = 100) has the symbol DRTAC, which

stands for a transfer from DR to AC. The CD (condition) field consists of two bits which are

encoded to specify four status bit conditions as listed in Table below.

Microinstruction Field Descriptions

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

3

Condition and Branching fields:

The first condition is always a 1, so that a reference to CD = 00 (or the symbol U) will always

find the condition to be true. When this condition is used in conjunction with the BR (branch)

field, it provides an unconditional branch operation. The indirect bit I is available from bit 15 of

DR after an instruction is read from memory. The sign bit of AC provides the next status bit. The

zero value, symbolized by Z, is a binary variable whose value is equal to 1 if all the bits in AC

are equal to zero. We will use the symbols U, I, S, and Z for the four status bits when we write

microprograms in symbolic form. The BR (branch) field consists of two bits. It is used, in

conjunction with the address field AD, to choose the address of the next microinstruction. As

shown in Table, when BR = 00, the control performs a jump GMP) operation (which is similar to

a branch), and when BR = 01, it performs a call to subroutine (CALL) operation. The two

operations are identical except that a call microinstruction stores the return address in the

subroutine register SBR. The jump and call operations depend on the value of the CD field. If the

status bit condition specified in the CD field is equal to 1, the next address in the AD field is

transferred to the control address register CAR_ Otherwise, CAR is incremented by 1. The return

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

4

from subroutine is accomplished with a BR field equal to 10. This causes the transfer of the

return address from SBR to CAR. The mapping from the operation code bits of the instruction to

an address for CAR is accomplished when the BR field is equal to 11. This mapping is as

depicted in Figure below. The bits of the operation code are in DR(11-14) after an instruction is

read from memory. Note that the last two conditions in the BR field are independent of the

values in the CD and AD fields.

Fetch Routine:

The control memory has 128 words, and each word contains 20 bits. To microprogram the

control memory, it is necessary to determine the bit values of each of the 128 words. The first 64

words (addresses 0 to 63) are to be occupied by the routines for the 16 instructions. The last 64

words may be used for any other purpose. A convenient starting location for the fetch routine is

address 64. The microinstructions needed for the fetch routine are

AR <-PC

DR <- M[AR], PC<-PC + 1

AR <- DR(0-10), CAR(2-5) <- DR(11-14), CAR(0,1,6) <-0

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

5

The three microinstructions that constitute the fetch routine have been listed in three different

representations. The register transfer representation shows the internal register transfer

operations that each microinstruction implements. The symbolic representation is useful for

writing microprograms in an assembly language format. The binary representation is the actual

internal content that must be stored in control memory. It is customary to write microprograms in

symbolic form and then use an assembler program to obtain a translation to binary.

Symbolic Microprogram:

When the third MAP microinstruction in the fetch routine is executed, it branches to address

0xxxx00, where xxx represents the four bits of the operation code. For example, if the operation

code for an ADD instruction is 0000, the MAP microinstruction will transfer to CAR the address

0000000, which is the start address for the ADD routine in control memory. The initial addresses

for the BRANCH and STORE routines are 000100 (decimal 4) and 000200 (decimal 8),

respectively, with the first addresses for the other 13 routines being at 12, 16, 20, ...60, providing

four words in control memory for each routine.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

6

Each routine must include microinstructions for evaluating the effective address and executing

the instruction. The indirect address mode, relevant to all memory-reference instructions, can

save control memory space if the microinstructions for indirect addressing are stored as a

subroutine called INDRCT, located right after the fetch routine (as shown in Table 7-2). This

table also displays the symbolic microprogram for the fetch routine and the microinstruction

routines for executing four computer instructions.

To illustrate how transfer and return from the indirect subroutine work, assume the MAP

microinstruction at the end of the fetch routine causes a branch to address 0, where the ADD

routine is stored. The first microinstruction in the ADD routine calls the INDRCT subroutine,

based on status bit I. If I = 1, it branches to INDRCT and saves the return address (T) in the

subroutine register SBR. The INDRCT subroutine has two microinstructions:

INDRCT: READ U JMP NEXT

 DRTAR U RET

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

7

In indirect addressing, the address part of the instruction indicates where the effective address is

stored, rather than being the operand's address. Thus, the memory must be accessed to retrieve

the effective address, which is then transferred to AR. The return from the subroutine (RET)

transfers the address from SBR to CAR, resuming execution at the second microinstruction of

the ADD routine.

The ADD instruction execution occurs through microinstructions at addresses 1 and 2. The first

microinstruction reads the operand from memory into DR, while the second adds the contents of

DR and AC and then jumps back to the beginning of the fetch routine.

The BRANCH instruction should direct control to the effective address if AC < 0. This condition

is detected when status bit 5 is 1, indicating a negative value. The BRANCH routine first checks

the value of S; if S = 0, no branch occurs, and the next microinstruction jumps back to the fetch

routine without changing the PC. If S = 1, control transfers to location 0\VER, where the

microinstruction calls the INDRCT subroutine if I = 1. The effective address is then moved from

AR to PC, and the program jumps back to the fetch routine.

The STORE routine also utilizes the INDRCT subroutine if I = 1. Here, the content of AC is

transferred to DR, initiating a memory write operation to store DR's content at the effective

address specified in AR.

In the EXCHANGE routine, the operand from the effective address is read into DR, and the

contents of DR and AC are swapped in the third microinstruction. This interchange is feasible

when the registers are of the edge-triggered type (see Fig. 1-23). Finally, the original content of

AC, now in DR, is stored back in memory.

Note that Table 7-2 shows only a partial list of the microprogram, covering four out of 16

possible computer instructions. Additionally, control memory words from locations 69 to 127

remain unused. Instructions like multiply and divide, which require longer sequences of

microoperations, will need more than four microinstructions for execution. These unused control

memory words can accommodate such requirements.

mailto:abdul@northern.edu.pk

