Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

(Week 8) Lecture 15-16

Learning objectives:

. Review of the last lecture
. Microinstruction format
. Fetch Routine

o Symbolic microprogram

(Note: It is important to note that we are considering “Basic computer architecture” processor
which we were discussing in the class and it’s the continuation of the same concepts. Another
important point is that brief part of the last lecture is repeated. Audio clip will be sent separately
for every diagram.)

Resources: Beside these lecture handouts, this lesson will draw from the following

Text Book: Computer System Architecture by Morris Mano (3™ Edition) and
Reference book:Computer Architecture, by William Stallings (4" Edition).

Lecture:

Microinstruction format:

This section introduces microinstruction of the control unit micro program. For the reference
User program instruction ‘Machine instruction’ format is also presented which is different from
the Microinstruction.

The microinstruction format for the control memory is shown in Figure below. The 20 bits of the
microinstruction are divided into four functional parts. The three fields F1, F2, and F3 specify
microoperations for the computer. The CD field selects status bit conditions. The BR field
specifies the type of branch to be used. The AD field contains a branch address. The address
field is seven bits wide, since the control memory has 128 = 27 words. The microoperations are
subdivided into three fields of three bits each. The three bits in each field are encoded to specify
seven distinct microoperations as listed in Table 7-1. No more than three microoperations can be
chosen for a microinstruction, one from each field. If fewer than three microoperations are used,
one or more of the fields will use the binary code 000 for no operation.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217
Machine instruction format
15 14 11 10 0
| I I Opcode | Address

Sample machine instructions

Symbol OP-code Description EAis the effecti dd
ADD 0000 | AC « AC+ M[EA] s the eliective address
BRANCH | 0001 | if(AC <0)then (PC « EA)

STORE 0010 | M[EA] < AC

EXCHANGE| 0011 | AC« M[EA], M[EA] « AC

Microinstruction Format

33 3 2 2 7
[1] 2| F3|co|BrR| AD |

F1, F2, F3: Microoperation fields

CD: Condition for branching
BR: Branch field
AD: Address field

The nine bits of the microoperation fields will then be 000 100 101. It is important to realize that
two or more conflicting microoperations cannot be specified simultaneously. For example, a
microoperation field 010 001 000 has no meaning because it specifies the operations to clear AC
to 0 and subtract DR from AC at the same time.

Microinstructions fields:

Each microoperation in Table presented belows is defined with a register transfer statement and
is assigned a symbol for use in a symbolic microprogram. All transfer-type microoperations
symbols use five letters. The first two letters designate the source register, the third letter is
always a T, and the last two letters designate the destination register. For example, the
microoperation that specifies the transfer AC <- DR (F1 = 100) has the symbol DRTAC, which
stands for a transfer from DR to AC. The CD (condition) field consists of two bits which are

encoded to specify four status bit conditions as listed in Table below.

Microinstruction Field Descriptions

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217
F1 Microoperation Symbeol F2 Microoperation Symbol
000 | None NOP 000 | None NOP
001 | ACe~ AC+DR ADD 001 | AC+—AC-DR SUB
010 | AC« 0 CLRAC 010 | AC+—ACvDR OR
011 | ACe AC+1 INCAC 011 | AC—ACADR AND
100 | AC« DR DRTAC 100 | DR« M[AR] READ
101 | AR« DR{0-10) DRTAR 101 | DR« AC ACTDR
110 | AR« PC PCTAR 110 | DR« DR+ 1 INCDR
111 | M[AR] « DR WRITE 111 | DR{0-10) « PC PCTDR

F3 Microoperation Symbol

000 | None NOP
001 | AC+— AC®DR XOR
010 | AC+« AC COM

011 | AC <« shlAC SHL
100 | AC «shrAC SHR
101 | PC+PC+1 INCPC
10 | PC— AR ARTPC
111 | Reserved

Condition and Branching fields:

The first condition is always a 1, so that a reference to CD = 00 (or the symbol U) will always
find the condition to be true. When this condition is used in conjunction with the BR (branch)
field, it provides an unconditional branch operation. The indirect bit I is available from bit 15 of
DR after an instruction is read from memory. The sign bit of AC provides the next status bit. The
zero value, symbolized by Z, is a binary variable whose value is equal to 1 if all the bits in AC
are equal to zero. We will use the symbols U, I, S, and Z for the four status bits when we write
microprograms in symbolic form. The BR (branch) field consists of two bits. It is used, in
conjunction with the address field AD, to choose the address of the next microinstruction. As
shown in Table, when BR = 00, the control performs a jump GMP) operation (which is similar to
a branch), and when BR = 01, it performs a call to subroutine (CALL) operation. The two
operations are identical except that a call microinstruction stores the return address in the
subroutine register SBR. The jump and call operations depend on the value of the CD field. If the
status bit condition specified in the CD field is equal to 1, the next address in the AD field is

transferred to the control address register CAR_ Otherwise, CAR is incremented by 1. The return

mailto:abdul@northern.edu.pk

Mr. Abdul Rehman

from subroutine is accomplished with a BR field equal to 10. This causes the transfer of the
return address from SBR to CAR. The mapping from the operation code bits of the instruction to
an address for CAR is accomplished when the BR field is equal to 11. This mapping is as
depicted in Figure below. The bits of the operation code are in DR(11-14) after an instruction is

read from memory. Note that the last two conditions in the BR field are independent of the

Computer Architecture ECS-355

email id: abdul@northern.edu.pk

values in the CD and AD fields.

Whatsapp# 0308-7792217

cD Condition | Symbol Comments
00 Always =1 U Unconditional branch
01 DR(15) | Indirect address bit
10 AC[15)) Sign bitof AC
1 AC=10 Z Zero value in AC
BR Symbol Function
00 JMP CAR « AD if condition =1
CAR « CAR+1 if condition=0
01 CALL | CAR « AD, SBR « CAR + 1 if condition =1
CAR « CAR+ 1 if condition=10
10 RET CAR + SBR (Return from subroutine)
1" MAP CAR[2-5) « DR{11-14), CAR[0,1,6) « 0

Fetch Routine:

The control memory has 128 words, and each word contains 20 bits. To microprogram the
control memory, it is necessary to determine the bit values of each of the 128 words. The first 64
words (addresses 0 to 63) are to be occupied by the routines for the 16 instructions. The last 64

words may be used for any other purpose. A convenient starting location for the fetch routine is

address 64. The microinstructions needed for the fetch routine are

AR <- DR(0-10),

AR <-PC

DR <- M[AR], PC<-PC+1

CAR(2-5) <- DR(11-14),

CAR(0,1,6) <-0

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

During FETCH, Read an instruction from memory
and decode the instruction and update PC

Sequence of microoperations in the fetch cycle:

AR« PC
DR « M[AR],PC « PC +1
AR « DR(0-10), CAR(2-5) < DR(11-14), CAR(0,1,6) « 0

Symbolic microprogram for the fetch cycle:

ORG 64

FETCH: PCTAR U JMP NEXT
READ,INCPC U JMP NEXT
DRTAR U MAP

Binary equivalents translated by an assembler

Binary

address F1 F2 F3 CcD BR AD
1000000 110 000 000 00 00 1000001
1000001 000 100 101 00 00 1000010
1000010 101 000 000 00 11 0000000

The three microinstructions that constitute the fetch routine have been listed in three different
representations. The register transfer representation shows the internal register transfer
operations that each microinstruction implements. The symbolic representation is useful for
writing microprograms in an assembly language format. The binary representation is the actual
internal content that must be stored in control memory. It is customary to write microprograms in

symbolic form and then use an assembler program to obtain a translation to binary.
Symbolic Microprogram:

When the third MAP microinstruction in the fetch routine is executed, it branches to address
0xxxx00, where xxx represents the four bits of the operation code. For example, if the operation
code for an ADD instruction is 0000, the MAP microinstruction will transfer to CAR the address
0000000, which is the start address for the ADD routine in control memory. The initial addresses
for the BRANCH and STORE routines are 000100 (decimal 4) and 000200 (decimal 8),
respectively, with the first addresses for the other 13 routines being at 12, 16, 20, ...60, providing

four words in control memory for each routine.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman

Each routine must include microinstructions for evaluating the effective address and executing
the instruction. The indirect address mode, relevant to all memory-reference instructions, can
save control memory space if the microinstructions for indirect addressing are stored as a
subroutine called INDRCT, located right after the fetch routine (as shown in Table 7-2). This

table also displays the symbolic microprogram for the fetch routine and the microinstruction

email id: abdul@northern.edu.pk

routines for executing four computer instructions.

To illustrate how transfer and return from the indirect subroutine work, assume the MAP
microinstruction at the end of the fetch routine causes a branch to address 0, where the ADD
routine is stored. The first microinstruction in the ADD routine calls the INDRCT subroutine,
based on status bit I. If 1 = 1, it branches to INDRCT and saves the return address (T) in the

Whatsapp# 0308-7792217

subroutine register SBR. The INDRCT subroutine has two microinstructions:

INDRCT: READ U JMP NEXT
DRTAR U RET
TABLE 7-2 Symbolic Microprogram (Partial)
Label Microoperations CD BR AD

ORG 0

ADD: NOP 1 CALL INDRCT
READ U IMP NEXT
ADD U IMP FETCH
ORG 4

BRANCH: NOP S IMP OVER
NOP U IMP FETCH

OVER: NOP I CALL INDRCT
ARTPC U IMP FETCH
ORG 8

STORE: NOP I CALL INDRCT
ACTDR U IMP NEXT
WRITE U JMP FETCH
ORG 12

EXCHANGE: NOP I CALL INDRCT
READ U IMP NEXT
ACTDR, DRTAC U JMP NEXT
WRITE U JMP FETCH
ORG 64

FETCH;: PCTAR 8] JMP NEXT
READ, INCPC U JMP NEXT
DRTAR U MAP

INDRCT: READ U JMP NEXT
DRTAR 18] RET

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217
In indirect addressing, the address part of the instruction indicates where the effective address is

stored, rather than being the operand's address. Thus, the memory must be accessed to retrieve
the effective address, which is then transferred to AR. The return from the subroutine (RET)
transfers the address from SBR to CAR, resuming execution at the second microinstruction of
the ADD routine.

The ADD instruction execution occurs through microinstructions at addresses 1 and 2. The first
microinstruction reads the operand from memory into DR, while the second adds the contents of
DR and AC and then jumps back to the beginning of the fetch routine.

The BRANCH instruction should direct control to the effective address if AC < 0. This condition
is detected when status bit 5 is 1, indicating a negative value. The BRANCH routine first checks
the value of S; if S = 0, no branch occurs, and the next microinstruction jumps back to the fetch
routine without changing the PC. If S = 1, control transfers to location 0\VER, where the
microinstruction calls the INDRCT subroutine if | = 1. The effective address is then moved from
AR to PC, and the program jumps back to the fetch routine.

The STORE routine also utilizes the INDRCT subroutine if 1 = 1. Here, the content of AC is
transferred to DR, initiating a memory write operation to store DR's content at the effective

address specified in AR.

In the EXCHANGE routine, the operand from the effective address is read into DR, and the
contents of DR and AC are swapped in the third microinstruction. This interchange is feasible
when the registers are of the edge-triggered type (see Fig. 1-23). Finally, the original content of

AC, now in DR, is stored back in memory.

Note that Table 7-2 shows only a partial list of the microprogram, covering four out of 16
possible computer instructions. Additionally, control memory words from locations 69 to 127
remain unused. Instructions like multiply and divide, which require longer sequences of
microoperations, will need more than four microinstructions for execution. These unused control

memory words can accommodate such requirements.

mailto:abdul@northern.edu.pk

