
Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

1

(Week 9) Lecture 17-18

Learning objectives:

 Review of the last lecture

 Binary Microprogram

 Design of control unit

 Microprogram sequencer

(Note: It is important to note that we are considering “Basic computer architecture” processor

which we were discussing in the class and it’s the continuation of the same concepts. Another

important point is that brief part of the last lecture is repeated. Audio clip will be sent separately

for every diagram.)

Resources: Beside these lecture handouts, this lesson will draw from the following

Text Book: Computer System Architecture by Morris Mano (3rd Edition) and

Reference book:Computer Architecture, by William Stallings (4th Edition).

Lecture:

Binary Microprogram

The symbolic microprogram is a convenient form for writing microprograms in a way that

people can read and understand. But this is not the way that the microprogram is stored in

memory. The symbolic microprogram must be translated to binary either by means of an

assembler program or by the user if the microprogram is simple enough as in this example.

The equivalent binary form of the microprogram is listed in Table 7-3 (Book). The addresses for

control memory are given in both decimal and binary. The binary content of each

microinstruction is derived from the symbols and their equivalent binary values as defined in

Table 7-1 (Book).

Note that address 3 has no equivalent in the symbolic microprogram since the ADD routine has

only three microinstructions at addresses 0, 1, and 2. The next routine starts at address 4. Even

though address 3 is not used, some binary value must be specified for each word in control

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

2

memory. We could have specified all 0' s in the word since this location will never be used.

However, if some unforeseen error occurs, or if a noise signal sets CAR to the value of 3, it will

be wise to jump to address 64, which is the beginning of the fetch routine.

The binary microprogram listed in Table 7-3 specifies the word content of the control memory.

When a ROM is used for the control memory, the microprogram binary list provides the truth

table for fabricating the unit. This fabrication is a hardware process and consists of creating a

mask for the ROM so as to produce the l's and D's for each word. The bits of ROM are fixed

once the internal links are fused during the hardware production. The ROM is made of IC

packages that can be removed if necessary and replaced by other packages. To modify the

instruction set of the computer, it is necessary to generate a new microprogram and mask a new

ROM. The old one can be removed and the new one inserted in its place.

If a writable control memory is employed, the ROM is replaced by a RAM. The advantage of

employing a RAM for the control memory is that the microprogram can be altered simply by

writing a new pattern of l'.s and D's without resorting to hardware procedures. A writable control

memory possesses the flexibility of choosing the instruction set of a computer dynamically by

changing the microprogram under processor control. However, most microprogrammed systems

use a ROM for the control memory because it is cheaper and faster than a RAM and also to

prevent the occasional user from changing the architecture of the system.

Example:

This example will explain the addition process of a variable which is stored in memory

(indirect addressing mode). We need to analyze and understand how Control Unit will

utilize the micro program for the said problem.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

3

Design of Control Unit

The bits of the microinstruction are usually divided into fields, with each field defining a distinct,

separate function. The various fields encountered in instruction formats provide control bits to

initiate microoperations in the system, special bits to specify the way that the next address is to

be evaluated, and an address field for branching. The number of control bits that initiate

microoperations can be reduced by grouping mutually exclusive variables into fields and

encoding the k bits in each field to provide 2K microoperations. Each field requires a decoder to

produce the corresponding control signals. This method reduces the size of the microinstruction

bits but requires additional hardware external to the control memory. It also increases the delay

time of the control signals because they must propagate through the decoding circuits. The

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

4

encoding of control bits was demonstrated in the programming example of the preceding section.

The nine bits of the microoperation field are divided into three subfields of three bits each. The

control memory output of each subfield must be decoded to provide the distinct microoperations.

The outputs of the decoders are connected to the appropriate inputs in the processor unit. Figure

below shows the three decoders and some of the connections that must be made from their

outputs. Each of the three fields of the microinstruction presently available in the output of

control memory are decoded with a 3 x 8 decoder to provide eight outputs. Each of these outputs

must be connected to the proper circuit to initiate the corresponding microoperation as specified

in Table 7-1. For example, when F1 = 101 (binary 5), the next clock pulse transition transfers the

content of DR(0-10) to AR (symbolized by DRTAR in Table 7-1). Similarly, when F1 = 110

(binary 6) there is a transfer from PC toAR (symbolized by PCTAR). As shown in Fig. 7-7,

outputs 5 and 6 of decoder f1 are connected to the load input of AR so that when either one of

these outputs is active, information from the multiplexers is transferred to AR. The multiplexers

select the information from DR when output 5 is active and from PC when output 5 is inactive.

The transfer into AR occurs with a clock pulse transition only when output 5 or output 6 of the

decoder are active. The other outputs of the decoders that initiate transfers between registers

must be connected in a similar fashion.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

5

The arithmetic logic shift unit can be designed as in Figs. 5-19 (chapter 5) and 5-20 (chapter 5).

Instead of using gates to generate the control signals marked by the symbols AND, ADD, and

DR in Fig. 5-19 (chapter 5), these inputs will now come from the outputs of the decoders

associated with the symbols AND, ADD, and DRTAC, respectively , as shown in Figure above.

The other outputs of the decoders that are associated with an AC operation must also be

connected to the arithmetic logic shift unit in a similar fashion.

Micro sequencer:

The basic components of a microprogrammed control unit are the control memory and the

circuits that select the next address. The address selection part is called a microprogram

sequencer. A microprogram sequencer can be constructed with digital functions to suit a

particular application. However, just as there are large ROM units available in integrated circuit

packages, so are general-purpose sequencers suited for the construction of microprogram control

units. To guarantee a wide range of acceptability, an integrated circuit sequencer must provide an

internal organization that can be adapted to a wide range of applications.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

6

The purpose of a microprogram sequencer is to present an address to the control memory so that

a microinstruction may be read and executed. The next-address logic of the sequencer determines

the specific address source to be loaded into the control address register. The choice of the

address source is guided by the next-address information bits that the sequencer receives from

the present microinstruction. Commercial sequencers include within the unit an internal register

stack used for temporary storage of addresses during microprogram looping and subroutine calls.

Some sequencers provide an output register which can function as the address register for the

control memory. To illustrate the internal structure of a typical microprogram sequencer we will

show a particular unit that is suitable for use in the microprogram computer example developed

in the preceding section. The block diagram of the microprogram sequencer is shown in figure

below. The control memory is included in the diagram to show the interaction between the

sequencer and the memory attached to it. There are two multiplexers in the circuit. The first

multiplexer selects an address from one of four sources and routes it into a control address

register CAR. The second multiplexer tests the value of a selected status bit and the result of the

test is applied to an input logic circuit. The output from CAR provides the address for the control

memory. The content of CAR is incremented and applied to one of the multiplexer inputs and to

the subroutine register SBR. The other three inputs to multiplexer number 1 come from the

address field of the present microinstruction, from the output of SBR, and from an external

source that maps the instruction. Although the diagram shows a single subroutine register, a

typical sequencer will have a register stack about four to eight levels deep. In this way, a number

of subroutines can be active at the same time. A push and pop operation, in conjunction with a

stack pointer, stores and retrieves the return address during the call and return microinstructions.

The CD (condition) field of the microinstruction selects one of the status bits in the second

multiplexer. If the bit selected is equal to 1, the T (test) variable is equal to 1; otherwise, it is

equal to 0. The T value together with the two bits from the BR (branch) field goes to an input

logic circuit. The input logic in a particular sequencer will determine the type of operations that

are available in the unit. Typical sequencer operations are: increment, branch or jump, call and

return from subroutine, load an external address, push or pop the stack, and other address

sequencing operations. With three inputs, the sequencer can provide up to eight address

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

7

sequencing operations. Some commercial sequencers have three or four inputs in addition to the

T input and thus provide a wider range of operations.

Figure: Microprogram sequencer

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

8

The input logic circuit in figure below has three inputs, I0, I1, and T, and three outputs, S0, S1,

and L. Variables So and S, select one of the source addresses for CAR. Variable L enables the

load input in SBR. The binary values of the two selection variables determine the path in the

multiplexer. For example, with S1 S0 = 10, multiplexer input number 2 is selected and

establishes a transferpath from SBR to CAR. Note that each of the four inputs as well as the

output of MUX 1 contains a 7-bit address. The truth table for the input logic circuit is shown in

Table 7-4. Inputs 11 and 10 are Identical to the bit values in the BR field. The function listed in

each entry was defined in Table 7·1. The bit values for S1 and So are determined from the stated

function and the path in the multiplexer that establishes the required transfer. The subroutine

register is loaded with the incremented value of CAR during a call microinstruction (BR ; 01)

provided that the status bit condition is satisfied (T =1). The truth table can be used to obtain the

simplified Boolean functions for the input logic circuit:

S1 = I1

S0 = I1.I0 + I1’ T

L= I1’I0T

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

9

The circuit can be constructed with three AND gates, an OR gate, and an inverter. Note that the

incrementer circuit in the sequencer of figure (microprogram sequencer) is not a counter

constructed with flip-flops but rather a combinational circuit constructed with gates. A

combinational circuit incrementer can be designed by cascading a series of half-adder circuits.

The output carry from one stage must be used to the input of the next stage. One input in the first

least significant stage must be equal to 1 to provide the increment-by-one operation.

mailto:abdul@northern.edu.pk

