Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

(Week 9) Lecture 17-18

Learning objectives:

° Review of the last lecture

o Binary Microprogram
o Design of control unit
. Microprogram sequencer

(Note: It is important to note that we are considering “Basic computer architecture” processor
which we were discussing in the class and it’s the continuation of the same concepts. Another
important point is that brief part of the last lecture is repeated. Audio clip will be sent separately
for every diagram.)

Resources: Beside these lecture handouts, this lesson will draw from the following

Text Book: Computer System Architecture by Morris Mano (3 Edition) and
Reference book:Computer Architecture, by William Stallings (4" Edition).

Lecture:
Binary Microprogram

The symbolic microprogram is a convenient form for writing microprograms in a way that
people can read and understand. But this is not the way that the microprogram is stored in
memory. The symbolic microprogram must be translated to binary either by means of an

assembler program or by the user if the microprogram is simple enough as in this example.

The equivalent binary form of the microprogram is listed in Table 7-3 (Book). The addresses for
control memory are given in both decimal and binary. The binary content of each
microinstruction is derived from the symbols and their equivalent binary values as defined in
Table 7-1 (Book).

Note that address 3 has no equivalent in the symbolic microprogram since the ADD routine has
only three microinstructions at addresses 0, 1, and 2. The next routine starts at address 4. Even

though address 3 is not used, some binary value must be specified for each word in control

1

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

memory. We could have specified all 0' s in the word since this location will never be used.
However, if some unforeseen error occurs, or if a noise signal sets CAR to the value of 3, it will

be wise to jump to address 64, which is the beginning of the fetch routine.

The binary microprogram listed in Table 7-3 specifies the word content of the control memory.
When a ROM is used for the control memory, the microprogram binary list provides the truth
table for fabricating the unit. This fabrication is a hardware process and consists of creating a
mask for the ROM so as to produce the I's and D's for each word. The bits of ROM are fixed
once the internal links are fused during the hardware production. The ROM is made of IC
packages that can be removed if necessary and replaced by other packages. To modify the
instruction set of the computer, it is necessary to generate a new microprogram and mask a new

ROM. The old one can be removed and the new one inserted in its place.

If a writable control memory is employed, the ROM is replaced by a RAM. The advantage of
employing a RAM for the control memory is that the microprogram can be altered simply by
writing a new pattern of I'.s and D's without resorting to hardware procedures. A writable control
memory possesses the flexibility of choosing the instruction set of a computer dynamically by
changing the microprogram under processor control. However, most microprogrammed systems
use a ROM for the control memory because it is cheaper and faster than a RAM and also to
prevent the occasional user from changing the architecture of the system.

Example:

This example will explain the addition process of a variable which is stored in memory
(indirect addressing mode). We need to analyze and understand how Control Unit will

utilize the micro program for the said problem.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

Address Binary Microinstruction

Micro
Routine Decimal Binary Fl1 F2 F3 CD BR AD

ADD 0 0000000 000 ©0O0O 000 01 01 1000011
1 0000001 000 100 000 00 00 0000010

2 0000010 001 000 000 OO0 OO0 1000000

3 0000011 000 000 OO0 OO OO0 1000000

BRANCH 4 0000100 000 000 ©00O0 10 OO 0OO0O0110
5 0000101 000 000 OO0 00 OO 1000000

6 0000110 000 000 000 O 01 1000011

7 0000111 000 o000 110 ©O0 00 1000000

STORE 8 0001000 000 000 000 O1 01 1000011
9 0001001 000 101 000 00 OO0 0001010

10 0001010 111 000 OO0 00 00 1000000

11 0001011 000 000 000 ©00 OO0 1000000

EXCHANGE 12 0001100 000 000 000 O1 01 1000011
13 0001101 001 000 000 ©00 00O 0001110

14 0001110 100 101 000 ©O0 00 0001111

15 0001111 111 000 000 00 00 1000000

FETCH 64 1000000 110 000 000 00 00 1000001
65 1000001 000 100 101 00 00 1000010

66 1000010 101 000 000 OO0 11 0O0OOOO

INDRCT 67 1000011 000 100 000 OO0 00 1000100
68 1000100 101 000 000 00 10 0000000

Design of Control Unit

The bits of the microinstruction are usually divided into fields, with each field defining a distinct,
separate function. The various fields encountered in instruction formats provide control bits to
initiate microoperations in the system, special bits to specify the way that the next address is to
be evaluated, and an address field for branching. The number of control bits that initiate
microoperations can be reduced by grouping mutually exclusive variables into fields and
encoding the k bits in each field to provide 2K microoperations. Each field requires a decoder to
produce the corresponding control signals. This method reduces the size of the microinstruction
bits but requires additional hardware external to the control memory. It also increases the delay
time of the control signals because they must propagate through the decoding circuits. The

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

encoding of control bits was demonstrated in the programming example of the preceding section.
The nine bits of the microoperation field are divided into three subfields of three bits each. The
control memory output of each subfield must be decoded to provide the distinct microoperations.
The outputs of the decoders are connected to the appropriate inputs in the processor unit. Figure
below shows the three decoders and some of the connections that must be made from their
outputs. Each of the three fields of the microinstruction presently available in the output of
control memory are decoded with a 3 x 8 decoder to provide eight outputs. Each of these outputs
must be connected to the proper circuit to initiate the corresponding microoperation as specified
in Table 7-1. For example, when F1 = 101 (binary 5), the next clock pulse transition transfers the
content of DR(0-10) to AR (symbolized by DRTAR in Table 7-1). Similarly, when F1 = 110
(binary 6) there is a transfer from PC toAR (symbolized by PCTAR). As shown in Fig. 7-7,
outputs 5 and 6 of decoder f1 are connected to the load input of AR so that when either one of
these outputs is active, information from the multiplexers is transferred to AR. The multiplexers
select the information from DR when output 5 is active and from PC when output 5 is inactive.
The transfer into AR occurs with a clock pulse transition only when output 5 or output 6 of the
decoder are active. The other outputs of the decoders that initiate transfers between registers

must be connected in a similar fashion.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

microoperation fields

LiL o b

3 x 8 decoder 3 x 8 decoder 3x 8 decoder
76543210 76543210 6543210
v||[¥v]+ vvev|vee TYYEVYYY

AND
ADD : Arithmetic +— AC
logic and
DRTAC sh?ft unit — DR
| e From From l
= | =
= PC DR{0-10
2| |8 7
Select 0 1
Multiplexers

The arithmetic logic shift unit can be designed as in Figs. 5-19 (chapter 5) and 5-20 (chapter 5).
Instead of using gates to generate the control signals marked by the symbols AND, ADD, and
DR in Fig. 5-19 (chapter 5), these inputs will now come from the outputs of the decoders
associated with the symbols AND, ADD, and DRTAC, respectively , as shown in Figure above.
The other outputs of the decoders that are associated with an AC operation must also be
connected to the arithmetic logic shift unit in a similar fashion.

Micro sequencer:

The basic components of a microprogrammed control unit are the control memory and the
circuits that select the next address. The address selection part is called a microprogram
sequencer. A microprogram sequencer can be constructed with digital functions to suit a
particular application. However, just as there are large ROM units available in integrated circuit
packages, so are general-purpose sequencers suited for the construction of microprogram control
units. To guarantee a wide range of acceptability, an integrated circuit sequencer must provide an

internal organization that can be adapted to a wide range of applications.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

The purpose of a microprogram sequencer is to present an address to the control memory so that
a microinstruction may be read and executed. The next-address logic of the sequencer determines
the specific address source to be loaded into the control address register. The choice of the
address source is guided by the next-address information bits that the sequencer receives from
the present microinstruction. Commercial sequencers include within the unit an internal register
stack used for temporary storage of addresses during microprogram looping and subroutine calls.
Some sequencers provide an output register which can function as the address register for the
control memory. To illustrate the internal structure of a typical microprogram sequencer we will
show a particular unit that is suitable for use in the microprogram computer example developed
in the preceding section. The block diagram of the microprogram sequencer is shown in figure
below. The control memory is included in the diagram to show the interaction between the
sequencer and the memory attached to it. There are two multiplexers in the circuit. The first
multiplexer selects an address from one of four sources and routes it into a control address
register CAR. The second multiplexer tests the value of a selected status bit and the result of the
test is applied to an input logic circuit. The output from CAR provides the address for the control
memory. The content of CAR is incremented and applied to one of the multiplexer inputs and to
the subroutine register SBR. The other three inputs to multiplexer number 1 come from the
address field of the present microinstruction, from the output of SBR, and from an external
source that maps the instruction. Although the diagram shows a single subroutine register, a
typical sequencer will have a register stack about four to eight levels deep. In this way, a number
of subroutines can be active at the same time. A push and pop operation, in conjunction with a
stack pointer, stores and retrieves the return address during the call and return microinstructions.
The CD (condition) field of the microinstruction selects one of the status bits in the second
multiplexer. If the bit selected is equal to 1, the T (test) variable is equal to 1; otherwise, it is
equal to 0. The T value together with the two bits from the BR (branch) field goes to an input
logic circuit. The input logic in a particular sequencer will determine the type of operations that
are available in the unit. Typical sequencer operations are: increment, branch or jump, call and
return from subroutine, load an external address, push or pop the stack, and other address
sequencing operations. With three inputs, the sequencer can provide up to eight address

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

sequencing operations. Some commercial sequencers have three or four inputs in addition to the
T input and thus provide a wider range of operations.

External
(MAP)
L l l h 4 ;
[Input 3210 Load
"1V logic [|31 MuX1 SBR |2t |
rT FS{}
1 . | Incrementerl
| — Test &
g »| MUX2
—* Select b
& & CIDEk—IE CAR |
Y
Control memory
Microops cD BR AD

Figure: Microprogram sequencer

cD Condition | Symbol
00 Always =1

Comments
Unconditional branch

01 | DR[15)
10 | Ac[15)
1 | ac=0

M —

Indirect address bit
Sign bit of AC
Fero value in AC

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217
BR Symbol Function
00 JMP CAR « AD if condition = 1
CAR « CAR+1 if condition=0
01 CALL | CAR « AD, SBR « CAR + 1 if condition =1
CAR « CAR+ 1 if condition=10
10 RET CAR « SBR (Return from subroutine)
11 MAP CAR(2-5) « DR[11-14), CAR(0,1,6) « 0

The input logic circuit in figure below has three inputs, lo, 11, and T, and three outputs, SO, S1,
and L. Variables So and S, select one of the source addresses for CAR. Variable L enables the
load input in SBR. The binary values of the two selection variables determine the path in the
multiplexer. For example, with S1 SO = 10, multiplexer input number 2 is selected and
establishes a transferpath from SBR to CAR. Note that each of the four inputs as well as the
output of MUX 1 contains a 7-bit address. The truth table for the input logic circuit is shown in
Table 7-4. Inputs 11 and 10 are Identical to the bit values in the BR field. The function listed in
each entry was defined in Table 7-1. The bit values for S1 and So are determined from the stated
function and the path in the multiplexer that establishes the required transfer. The subroutine
register is loaded with the incremented value of CAR during a call microinstruction (BR ; 01)
provided that the status bit condition is satisfied (T =1). The truth table can be used to obtain the

simplified Boolean functions for the input logic circuit:
Si=h
So=lilo+ 12T

L= 1"1oT

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

TABLE 74 inpec Logic Truh Table for Mrmprogram Sequence

BR Input MUX 1 Load SBR
Fiel h 1e T 5.5 L
0 0 0O 0 0 0 0 0
0 0 0 01 0 1 0
01 010 00 0
01 011 01 |
1 0 1 0 x 1 0 0
1 1} i 1 1 1 0

The circuit can be constructed with three AND gates, an OR gate, and an inverter. Note that the
incrementer circuit in the sequencer of figure (microprogram sequencer) is not a counter
constructed with flip-flops but rather a combinational circuit constructed with gates. A
combinational circuit incrementer can be designed by cascading a series of half-adder circuits.
The output carry from one stage must be used to the input of the next stage. One input in the first

least significant stage must be equal to 1 to provide the increment-by-one operation.

mailto:abdul@northern.edu.pk

