Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217
(Week 12) Lecture 23-24

Learning objectives:
o Review of the last lecture
o Types of addressing modes
o Types of instructions
o Data Transfer & Manipulation
o Program control instructions
Resources: Beside these lecture handouts, this lesson will draw from the following

Text Book: Computer System Architecture by Morris Mano (3" Edition) and
Reference book: Computer Architecture, by William Stallings (4" Edition).

Lecture:
Introduction

The operation field of an instruction specifies the operation to be performed. This operation must
be executed on some data stored in computer registers or memory words. The way the operands
are chosen during program execution is dependent on the addressing mode of the instruction. The
addressing mode specifies a rule for interpreting or modifying the address field of the instruction
before the operand is actually referenced. Computers use addressing mode techniques for the

purpose of accommodating one or both of the following provisions:

1. To give programming versatility to the user by providing such facilities as pointers to memory,

counters for loop control, indexing of data, and program relocation.
2. To reduce the number of bits in the addressing field of the instruction.

The availability of the addressing modes gives the experienced assembly language programmer
flexibility for writing programs that are more efficient with respect to the number of instructions
and execution time. To understand the various addressing modes to be presented in this section, it
is imperative that we understand the basic operation cycle of the computer. The control unit of a

computer is designed to go through an instruction cycle that is divided into three major phases:

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217
1. Fetch the instruction from memory.

2. Decode the instruction.
3. Execute the instruction.
Program counter (PC)

There is one register in the computer called the program counter or PC that keeps track of the
instructions in the program stored in memory. PC holds the address of the instruction to be
executed next and is incremented each time an instruction is fetched from memory. The decoding
done in step 2 determines the operation to be performed, the addressing mode of the instruction,
and the location of the operands. The computer then executes the instruction and returns to step 1
to fetch the next instruction in sequence. In some computers the addressing mode of the instruction
is specified with a distinct binary code, just like the operation code is specified. Other computers
use a single binary code that designates both the operation and the mode of the instruction.
Instructions may be defined with a variety of addressing modes, and sometimes, two or more

addressing modes are combined in one instruction.

An example of an instruction format with a distinct addressing mode field is shown in Fig. below.
The operation code specifies the operation to be performed. The mode field is used to locate the
operands needed for the operation. There may or may not be an address field in the instruction. If
there is an address field, it may designate a memory address or a processor register. Moreover, as
discussed in the preceding section, the instruction may have more than one address field, and each
address field may be associated with its own particular addressing mode. Although most
addressing modes modify the address field of the instruction, there are two modes that need no

address field at all. These are the implied and immediate modes.

Operation code Mode Address

Figure: Instruction format with mode field.

Types of Addressing Modes

Implied Mode

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217
In this mode the operands are specified implicitly in the definition of the instruction. For example,

the instruction "complement accumulator” is an implied-mode instruction because the operand in
the accumulator register is implied in the definition of the instruction. In fact, all register reference
instructions that use an accumulator are implied-mode instructions. Zero-address instructions in a
stack-organized computer are implied-mode instructions since the operands are implied to be on

top of the stack.
e Address of the operands are specified implicitly in the definition of the instruction
e No need to specify address in the instruction

Immediate Mode

In this mode the operand is specified in the instruction itself. In other words, an immediate-mode
instruction has an operand field rather than an address field. The operand field contains the actual
operand to be used in conjunction with the operation specified in the instruction. Immediate-mode

instructions are useful for initializing registers to a constant value.
e Instead of specifying the address of the operand, operand itself is specified
e No need to specify address in the instruction
e However, operand itself needs to be specified
e Sometimes, require more bits than the address
e Fast to acquire an operand

Register Mode

In this mode the operands are in registers that reside within the CPU. The particular register is

selected from a register field in the instruction. A k-bit field can specify any one of 2K registers.
e Address specified in the instruction is the register address
e Designated operand need to be in a register
e Shorter address than the memory address

e Saving address field in the instruction

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217
e Faster to acquire an operand than the memory addressing

Register Indirect Mode

In this mode the instruction specifies a register in the CPU whose contents give the address of the
operand in memory. In other words, the selected register contains the address of the operand rather
than the operand itself. Before using a register indirect mode instruction, the programmer must
ensure that the memory address of the operand is placed in the processor register with a previous
instruction. A reference to the register is then equivalent to specifying a memory address. The
advantage of a register indirect mode instruction is that the address field of the instruction uses

fewer bits to select a register than would have been required to specify a memory address directly.
e Instruction specifies a register which contains the memory address of the operand
e Saving instruction bits since register address is shorter than the memory address
e Slower to acquire an operand than both the register addressing or memory addressing
Autoincrement or Autodecrement Mode

This is similar to the register indirect mode except that the register is incremented or decremented
after (or before) its value is used to access memory. When the address stored in the register refers
to a table of data in memory, it is necessary to increment or decrement the register after every
access to the table. This can be achieved by using the increment or decrement instruction.
However, because it is such a common requirement, some computers incorporate a special mode

that automatically increments or decrements the content of the register after data access.

e When the address in the register is used to access memory, the value in the register is

incremented or decremented by 1 automatically.
Direct Address Mode

In this mode the effective address is equal to the address part of the instruction. The operand resides
in memory and its address is given directly by the address field of the instruction. In a branch-type
instruction the address field specifies the actual branch address.

e Instruction specifies the memory address which can be used directly to the physical

memory

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217
e Faster than the other memory addressing modes

e Too many bits are needed to specify the address for a large physical memory space

Indirect Addressing Mode

In this mode the address field of the instruction gives the address where the effective address is
stored in memory. Control fetches the instruction from memory and uses its address part to access

memory again to read the effective address.

e The address field of an instruction specifies the address of a memory location that

contains the address of the operand

e When the abbreviated address is used large physical memory can be addressed with a

relatively small number of bits
e Slow to acquire an operand because of an additional memory access

Relative Addressing Modes

In this mode the content of the program counter is added to the address part of the instruction in
order to obtain the effective address. When this number is added to the content of the program
counter, the result produces an effective address whose position in memory is relative to the

address of the next instruction.

e The Address fields of an instruction specifies the part of the address (abbreviated
address) which can be used along with a designated register to calculate the address of

the operand
e Address field of the instruction is short
e Large physical memory can be accessed with a small number of address bits
Three different Relative Addressing Modes depending on R;
e PC Relative Addressing Mode(R = PC)

= EA=PC + IR(address)

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217
e Indexed Addressing Mode(R = IX, where IX: Index Register)

= EA=IX+ IR(address)
e Base Register Addressing Mode(R = BAR, where BAR: Base Address Register)
= EA =BAR + IR(address)
Instructions

Computers provide an extensive set of instructions to give the user the flexibility to carry out
various computational tasks. The instruction set of different computers differ from each other
mostly in the way the operands are determined from the address and mode fields. The actual
operations available in the instruction set are not very different from one computer to another. It
so happens that the binary code assignments in the operation code field is different in different
computers, even for the same operation. It may also happen that the symbolic name given to
instructions in the assembly language notation is different in different computers, even for the
same instruction. Nevertheless, there is a set of basic operations that most, if not all, computers
include in their instruction repertoire. The basic set of operations available in a typical computer
is the subject covered in this and the next section. Most computer instructions can be classified
into three categories:

1. Data transfer instructions
2. Data manipulation instructions
3. Program control instructions

Data transfer instructions cause transfer of data from one location to another without changing the
binary information content. Data manipulation instructions are those that perform arithmetic, logic,
and shift operations. Program control instructions provide decision-making capabilities and
change the path taken by the program when executed in the computer. The instruction set of a
particular computer determines the register transfer operations and control decisions that are

available to the user.

Data Transfer Instructions

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217
Data transfer instructions move data from one place in the computer to another without changing

the data content. The most common transfers are between memory and processor registers,
between processor registers and input or output, and between the processor registers themselves.
Table 8-5 gives a list of eight data transfer instructions used in many computers. Accompanying
each instruction is a mnemonic symbol. It must be realized that different computers use different
mnemonics for the same instruction name. The load instruction has been used mostly to designate
a transfer from memory to a processor register, usually an accumulator. The store instruction
designates a transfer from a processor register into memory. The move instruction has been used
in computers with multiple CPU registers to designate a transfer from one register to another. It
has also been used for data transfers between CPU registers and memory or between two memory
words. The exchange instruction swaps information between two registers or a register and a
memory word. The input and output instructions transfer data among processor registers and input
or output terminals. The push and pop instructions transfer data between processor registers and a

memory stack.

MName Mnemonic
Load LD
Store ST
Move MOV
Exchange XCH
Input IN
Output ouT
Push PUSH
Pop POP

Data Manipulation Instruction

Data manipulation instructions perform operations on data and provide the computational
capabilities for the computer. The data manipulation instructions in a typical computer are usually

divided into three basic types:
1. Arithmetic instructions

2. Logical and bit manipulation instructions

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217
3. Shift instructions

It must be realized, however, that each instruction when executed in the computer must go through
the fetch phase to read its binary code value from memory. The operands must also be brought
into processor registers according to the rules of the instruction addressing mode. The last step is

to execute the instruction in the processor.
Arithmetic Instructions

The four basic arithmetic operations are addition, subtraction, multiplication, and division. Most
computers provide instructions for all four operations. Some small computers have only addition
and possibly subtraction instructions. The multiplication and division must then be generated by
means of software subroutines. The four basic arithmetic operations are sufficient for formulating

solutions to scientific problems when expressed in terms of numerical analysis methods.

Name Mnemonic
Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with carry ADDC
Subtract with borrow SUBB
Negate (2's complement) NEG

Logical and Bit Manipulation Instructions

Logical instructions perform binary operations on strings of bits stored in registers. They are useful
for manipulating individual bits or a group of bits that represent binary-coded information. The
logical instructions consider each bit of the operand separately and treat it as a Boolean variable.
By proper application of the logical instructions it is possible to change bit values, to clear a group

of bits, or to insert new bit values into operands stored in registers or memory words.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217
Name Mnemonic

Clear CLR
Complement COM
AND AND
OR OR
Exclusive-OR XOR
Clear carry CLRC
Set carry SETC
Complement carry COMC
Enable interrupt EI
Disable interrupt DI

Shift Instructions

Instructions to shift the content of an operand are quite useful and are often provided in several
variations. Shifts are operations in which the bits of a word are moved to the left or right. The bit
shifted in at the end of the word determines the type of shift used. Shift instructions may specify
logical shifts, arithmetic shifts, or rotate-type operations. In either case the shift may be to the right
or to the left.

Name Mnemonic
Logical shift right SHR
Logical shift left SHL
Arithmetic shift right SHRA
Arithmetic shift left SHLA
Rotate right ROR
Rotate left ROL

Rotate right through carry RORC
Rotate left through carry ROLC

Program Control Instructions

Instructions are always stored in successive memory locations. When processed in the CPU, the
instructions are fetched from consecutive memory locations and executed. Each time an instruction
is fetched from memory, the program counter is incremented so that it contains the address of the

next instruction in sequence. After the execution of a data transfer or data manipulation instruction,

9

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217
control returns to the fetch cycle with the program counter containing the address of the instruction

next in sequence. On the other hand, a program control type of instruction, when executed, may
change the address value in the program counter and cause the flow of control to be altered. In
other words, program control instructions specify conditions for altering the content of the program
counter, while data transfer and manipulation instructions specify conditions for data-processing
operations. The change in value of the program counter as a result of the execution of a program
control instruction causes a break in the sequence of instruction execution. This is an important
feature in digital computers, as it provides control over the flow of program execution and a
capability for branching to different program segments.

+1

In-Line Sequencing

' (Mextinstruction is fetched from the
[PC J next adjacent location in the memory)

Address from other source; Current Instruction, Stack, etec
Branch, Conditional Branch, Subroutine, etc

Program Control Instructions

Name Mnemenic |

Branch BR

Jump JMP

Skip SKP

g“" g‘ﬁ‘ml"“ “CMP and TST instructions do not retain their
C:tnl::rp';re[hv 4 CMP results of operations(- and AND, respectively).
Test{by AND) TST They only set or clear certain Flags.

Conditional Branch Instructions

Conditional Branch Instructions gives a list of the most common branch instructions. Each
mnemonic is constructed with the letter B (for branch) and an abbreviation of the condition name.
When the opposite condition state is used, the letter N (for no) is inserted to define the O state.
Thus BC is Branch on Carry, and BNC is Branch on No Carry. If the stated condition is true,
program control is transferred to the address specified by the instruction. If not, control continues
with the instruction that follows. The conditional instructions can be associated also with the jump,

skip, call, or return type of program control instructions.

Following table contains the list of conditional branch instructions.

10

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217
Mnemonic Branch condition Tested condition
BZ Branch if zero Z=1
BNZ Branch if not zero Z=0
BC Branch if carry c=1
BNC Branch if no carry C=0
BP Branch if plus 5=0
BM Branch if minus 5=1
BV Branch if overflow V=1
BNV Branch if no overflow V=0
Unsigned compare conditions (A - B)
BHI Branch if higher A>DB
BHE Branch if higher or equal A=B
BLO Branch if lower A=<B
BLOE Branch if lower or equal A<B
BE Branch if equal A=B
BNE Branch if not equal A=B
Signed compare conditions (A - B)
BGT Branch if greater than A>DB
BGE Branch if greater or equal A=B
BLT Branch if less than A<B
BLE Branch if less or equal A<B
BE Branch if equal A=B
BNE Branch if not equal A=B

Subroutine call and return

A subroutine is a self-contained sequence of instructions that performs a given computational task.
During the execution of a program, a subroutine may be called to perform its function many times
at various points in the main program. Each time a subroutine is called, a branch is executed to the
beginning of the subroutine to start executing its set of instructions. After the subroutine has been
executed, a branch is made back to the main program. The instruction that transfers program
control to a subroutine is known by different names. The most common names used are call
subroutine, jJump to subroutine, branch to subroutine, or branch and save address. A call subroutine
instruction consists of an operation code together with an address that specifies the beginning of
the subroutine. The instruction is executed by performing two operations: (1) the address of the
next instruction available in the program counter (the return address) is stored in a temporary
location so the subroutine knows where to return, and (2) control is transferred to the beginning of
the subroutine. The last instruction of every subroutine, commonly called return from subroutine,

transfers the return address from the temporary location into the program counter. This results in

11

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217
a transfer of program control to the instruction whose address was originally stored in the

temporary location.

SUBROUTINE CALL Call subroutine
Jump to subroutine

Branch to subroutine
Branch and save return address

Two Most Important Operations are Implied;

* Branch to the beginning of the Subroutine
- Same as the Branch or Conditional Branch

* S8ave the Return Address to get the address
of the location in the Calling Program upon
exit from the Subroutine

- Locations for storing Return Address

+ Fixed Location in the subroutine(Memory) CALL
+ Fixed Location in memory SP < SP-1
«In a processor Register M[SP] <~ PC
+In a memory stack PC « EA
- most efficient way
RTN
PC <« M[SP]
SP <« SP+1

12

mailto:abdul@northern.edu.pk

