Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

(Week 15) Lecture 29-30
Learning objectives:
o Review of the last lecture
o RISC Instruction Pipeline
o Delayed Load and Delayed Branch
o Vector Processing
o Vector Operations
Resources: Beside these lecture handouts, this lesson will draw from the following

Text Book: Computer System Architecture by Morris Mano (37 Edition) and
Reference book: Computer Architecture, by William Stallings (4" Edition).

Lecture:
Four-Segment Instruction Pipeline

Pipeline Assume that the decoding of the instruction can be combined with the calculation of the
effective address into one segment. Assume further that most of the instructions place the result
into a processor register so that the instruction execution and storing of the result can be

combined into one segment. This reduces the instruction pipeline into four segments.

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

v +

segmentt: | FefghITamEton

v

Decode instruction
Segment2: and calculate
g effective*address

ranch?

no

Fetch operand
from memory

Vs

Segmenta:

Segment4: | Execute instruction |

Interrupt 5’55
handling

no
Update PC
Step: 1 21314 516 |7 8|9 |10 |11 |12 |13
Instruction 1 |FI |DA|FO | EX
2 FI | DA|FO | EX
(Branch) 3 FI |DA|FO|EX
4 Fl | = |~ |F |DA|FO |EX
5 -|-1]-|H |DA]|FO|EX
G FI |DA|FO | EX
7 FI | DA |FO | EX

Three-Segment Instruction Pipeline

The control section fetches the instruction from program memory into an instruction register.
The instruction is decoded at the same time that the registers needed for the execution of the
instruction are selected. The processor unit consists of a number of registers and an arithmetic
logic unit (ALU) that performs the necessary arithmetic, logic, and shift operations. A data
memory is used to load or store the data from a selected register in the register file. The

instruction cycle can be divided into three sub-operations and implemented in three segments:
I: Instruction fetch

A: ALU operation

E: Execute instruction

Delayed Load

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk

Consider now the operation of the following four instructions:

1.
2.
3.
4.

If the three-segment pipeline proceeds without interruptions, there will be a data conflict in
instruction 3 because the operand in R2 is not yet available in the A segment. This can be seen
from the timing of the pipeline shown in Fig. (a). The E segment in clock cycle 4 is in a process
of placing the memory data into R2. The A segment in clock cycle 4 is using the data from R2,
but the value in R2 will not be the correct value since it has not yet been transferred from
memory. It is up to the compiler to make sure that the instruction following the load instruction
uses the data fetched from memory. If the compiler cannot find a useful instruction to put after
the load, it inserts a no-op (no-operation) instruction. This is a type of instruction that is fetched

from

LOAD: Rl « M[address 1]
LOAD: R2< M[address 2]
ADD: R3¢ Rl + R2

STORE: M[address 3] <R3

Whatsapp# 0308-7792217

mailto:abdul@northern.edu.pk

Mr. Abdul Rehman

Delayed Branch

It was shown in Fig. that a branch instruction delays the pipeline operation until the instruction at
the branch address is fetched. Several techniques for reducing branch penalties were discussed in
the preceding section. The method used in most RISC processors is to rely on the compiler to
redefine the branches so that they take effect at the proper time in the pipeline. This method is

Computer Architecture ECS-355

email id: abdul@northern.edu.pk

Whatsapp# 0308-7792217

Clock cycles: 213 6
1.Load Rl A|lE
2.Load R2 1 | A
3. Add R1 + R2 |
4. Store R 3 E
(a) Pipeline timing with data conflict
Clock cycle: 3|4 7
1. Load R1 E
2. Load R2 A|E
3. No-operation 1| A
4. AddR1 + R2 |
5. Store R3 E

(b) Pipeline timing with delayed load

referred to as delayed branch.

The compiler for a processor that uses delayed branches is designed to analyze the instructions
before and after the branch and rearrange the program sequence by inserting useful instructions
in the delay steps.

An example of delayed branch is shown in Fig. The program for this example consists of five

instructions:

1. Load from memory to R1

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

2. Increment R2
3. AddR3to R4
4. Subtract R5 from R6

5. Branch to address X

Clock cycles: 1|2

1. Load I|A

>l m| w

2. Increment I

3. Add I |A|E

4. Subtract I|A|E
5. Branch to X I1|A|E

6. No-operation I11A| E

7. No-operation I1|A|E

E. Instruction in X I|A|E

(a) Using no-operation instructions

Clock cycles: 12|34 |5|6|7]|8
1. Load I|A|E

2. Increment I 1A

3 Branchto X I11A|E

4. Add I | A| E

5. Subtract I1|A|E

6. Instruction in X I|A|E

(b) Rearranging the instructions

Vector Processing

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

There is a class of computational problems that are beyond the capabilities of a conventional
computer. These problems are characterized by the fact that they require a vast number of

computations that will take a conventional computer days or even weeks to complete.
Computers with vector processing capabilities are in demand in specialized applications.
e Long-range weather forecasting
e Petroleum explorations
e Seismic data analysis
e Medical diagnosis
Vector Operations

Many scientific problems require arithmetic operations on large arrays of numbers. These
numbers are usually formulated as vectors and matrices of floating-point numbers. A vector is an
ordered set of a one-dimensional array of data items. A vector V of length n is represented as a
row vector by V = [V1, V2, V3, - - - Vn].

To examine the difference between a conventional scalar processor and a vector processor,

consider the following Fortran DO loop:
DO I=1, 100
Ch=B(M+A()

This is a program for adding two vectors A and B of length 100 to produce a vector C. This is

implemented in machine language by the following sequence of operations initialize 1= 0
Read A (1)
Read B (1)
Store C (1) =A (1)+ B(I)
Increment 1= 1+ 1

If I <=100 go to 20

mailto:abdul@northern.edu.pk

Computer Architecture ECS-355

Mr. Abdul Rehman email id: abdul@northern.edu.pk Whatsapp# 0308-7792217

Continue

This constitutes a program loop that reads a pair of operands from arrays A and B and performs a

floating-point addition. The loop control variable is then updated and the steps repeat 100 times.

A computer capable of vector processing eliminates the overhead associated with the time it
takes to fetch and execute the instructions in the program loop. It allows operations to be

specified with a single vector instruction of the form
C (1: 100) = A (1: 100) + B (1: 100)

The vector instruction includes the initial address of the operands, the length of the vectors, and

the operation to be performed, all in one composite instruction.

mailto:abdul@northern.edu.pk

