(Week 7) Lecture 13-14

Objectives: Learning objectives of this lecture are

- Nondeterministic Finite Automata (NFA)
- Conversion from NFA to FA

Text Book & Resources:

Introduction to Computer Theory–2nd Edition - (I. O. Cohen)

Nondeterministic Finite Automata

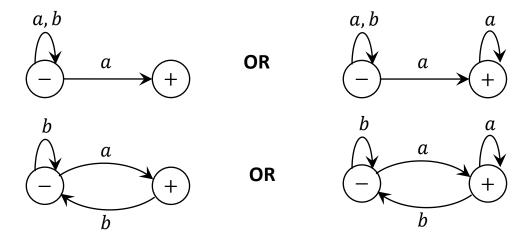
What is Nondeterministic Finite Automata (NFA)?

NFA seems to be just like a DFA but having following violations of DFA

- It accepts a Atransition.
- It allows zero, one or more than one transition of any symbol from set of given alphabets on each state.

Note: Every DFA is NFA because NFA can have the above mentioned violations but it doesn't mean that these violations must to be happened in NFA.

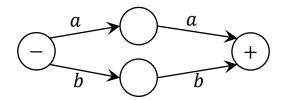
Example1: The language end on a. $\Sigma = \{a, b\}$



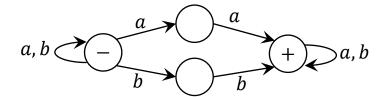
In above example, all four solutions are acceptable because

- Every solution passes every word of the language end on α .
- No word except the language end on α passed.

Example2: Language having words {aa, bb} over $\Sigma = \{a \ b\}$

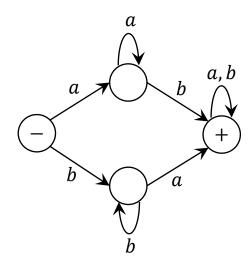


Example3: The language of all words that have substring aa or bb.

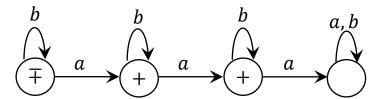


Note: Now, no need to complete transections of each letter on each state as shown above.

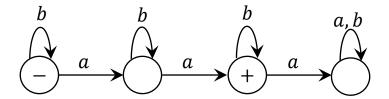
Example4: The language of all words that have at least one a and at least one b is somewhat trickier.



Example 5: The Language contain at most two a's defined over, $\Sigma = \{a,b\}$



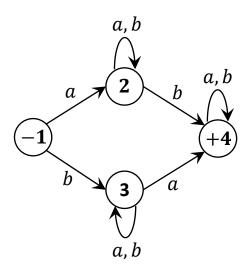
Example6: The Language contain exact two a's defined over, $\Sigma = \{a,b\}$



NFA to FA Conversion

NFA to DFA conversion can be understood by the help of examples.

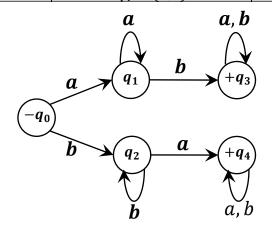
Example7: Consider the NFA for the language contain substring ab or ba defined over, $\Sigma = \{a,b\}$



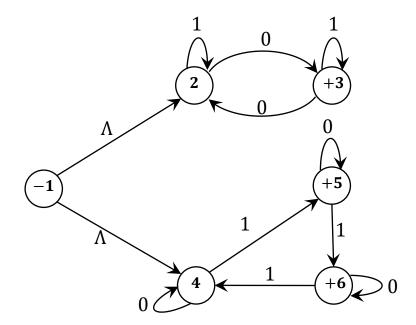
Solution:

To convert from NFA to FA, we will use a transition table in which we check each state by giving each symbol in each state.

	а	b
$-q_0 = \{1\}$	$q_1 = \{2\}$	$q_2 = \{3\}$
$\boldsymbol{q_1} = \{2\}$	$q_1 = \{2\}$	$q_3 = \{2,4\}$
$q_2 = \{3\}$	$q_4 = \{3,4\}$	$q_2 = \{3\}$
$+q_3 = \{2,4\}$	$q_3 = \{2,4\}$	$q_3 = \{2,4\}$
$+q_4 = \{3,4\}$	$q_4 = \{3,4\}$	$q_4 = \{3,4\}$



Example8: Give an NFA for the set of all binary strings thathave either the number of 0's odd, or the number of 1's not a multiple of 3, or both.



	0	1
$-q_0 = \{1\}$	$q_1 = \{3, 4\}$	$q_2 = \{2, 5\}$
$+q_1 = \{3,4\}$	$q_3 = \{2, 4\}$	$q_4 = \{3, 5\}$
$+q_2 = \{2, 5\}$	$q_4 = \{3, 5\}$	$q_5 = \{2, 6\}$
$q_3 = \{2, 4\}$	$q_1 = \{3, 4\}$	$q_2 = \{2, 5\}$
$+q_4 = \{3,5\}$	$q_2 = \{2, 5\}$	$q_6 = \{3, 6\}$
$+q_5 = \{2,6\}$	$q_6 = \{3, 6\}$	$q_3 = \{2, 4\}$
$+q_6 = \{3,6\}$	$q_{5} = \{2, 6\}$	$q_1 = \{3, 4\}$

