Dr. Naseer Ahmad Sajid

(Week15)Lecture29-30

Objectives: Learningobjectivesofthislectureare

- A New Format for FA
 - **o New Terminologies**
 - o Input Tape parsing
 - o New Symbols for FA
 - o Examples
- Adding a Push Down Stack to make Push Down Automata
 - o Examples

TextBook&Resources:IntroductiontoComputerTheory-2ndEdition-(I.O.Cohen)

Video Recources link

A new Format for FAs

- We will start with our old FA's and throw in some new diagrams that will augment them and make them more powerful.
- In this chapter complete new designs will be created for modeling FA's.

New terminologies

- We call it INPUT TAPE to the part of the FA where the input string lives while it is being run.
- The INPUT TAPE must be long enough for any possible input, and since any word in
 a* is a possible input, the TAPE must be infinitely long.
- The TAPE has a first location for the first letter of the input, then a second location, and so on.
- Therefore, we say that the TAPE is infinite in one direction only.

A new Format

• The locations into which put the input letters are called cells. (See table below)

- Name the cells with lowercase Roman numerals.
- The Δ used to indicate the blank
- Input string is aab

Input tape parsing

- As TAPE is processed, on the machine we read one letter at a time and eliminate each
 as it is used.
- When we reach the first blank cell we stop.
- We always presume that once the first blank is encountered the rest of the TAPE is also blank.
- We read from left to right and never go back to a cell that was read before.

New symbols for FA

- To streamline the design of the machine, some symbols are used.
- The arrows (directed edges) into or out of these states can be drawn at any angle.

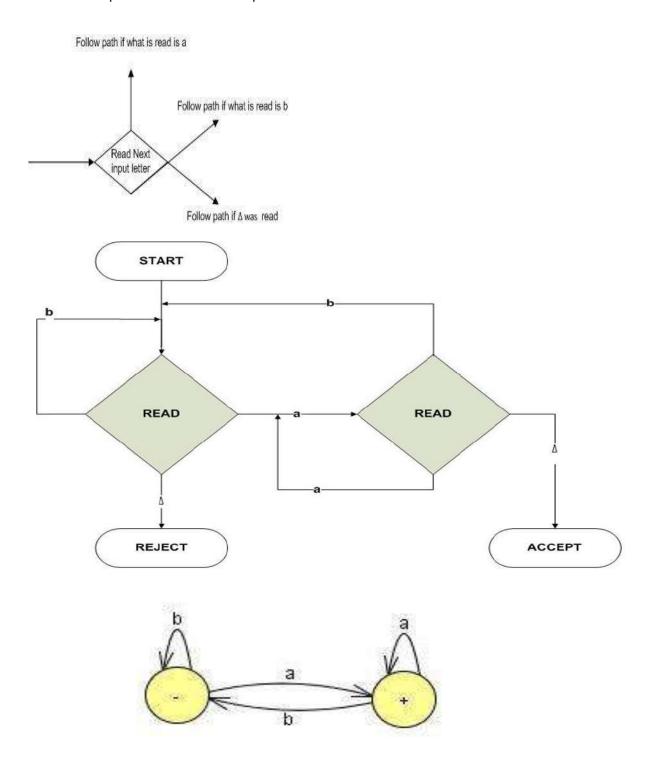
 The START state is like a state connected to another state in a TG by a Λ edge.
- We begin the process there, but we read no input letter. We just proceed immediately to the next state.
- A start state has no arrows coming into it.

 An ACCEPT state is a shorthand notation for a dead-end final state-once entered, it cannot be left, shown:

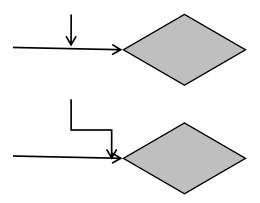


A REJECT state is a dead-end state that is not final

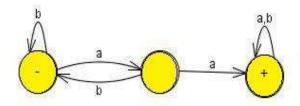
- READ states are introduced.
- These are depicted as diamond shaped boxes



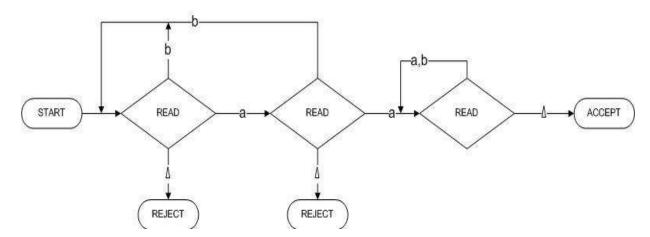
• We have also used the electronic diagram notation for wires flowing into each other.



• We have also used the electronic diagram notation for wires flowing into each other.



Becomes



Adding A Pushdown Stack

A PUSHDOWN STACK is a place where input letters can be stored until we want to refer to them again.

- It holds the letters it has been fed in a long line. The operation PUSH adds a new letter to the line.
- The new letter is placed on top of the STACK, and all the other letters are pushed back (or down) accordingly.
- Before the machine begins to process an input string the STACK is presumed to be empty, which means that every storage location in it initially contains a blank.
- If the STACK is then fed the letters a, b, c, d by this sequence of instructions:

PUSH a

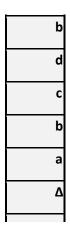
PUSH b

PUSH c

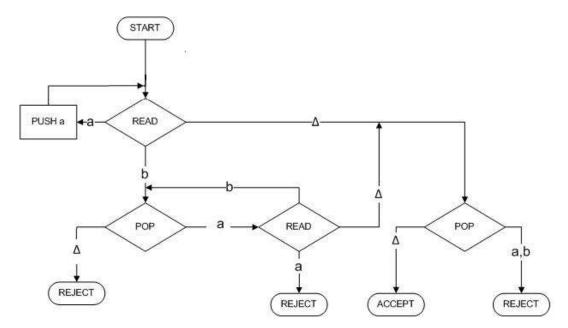
PUSH d

- Then top letter in the STACK is d, the second is c, the third is b, and the fourth is a.
- If we now execute the instruction:
- PUSH b the letter b will be added to the STACK on the top. The d will be pushed down to position 2, the c to position 3, the other b to position 4, and the bottom a to position 5.
- One pictorial representation of a STACK with these letters in it is shown below.

Beneath the bottom a we presume that the rest of the STACK, which, like the INPUT TAPE, has infinitely many storage locations, holds only blanks.



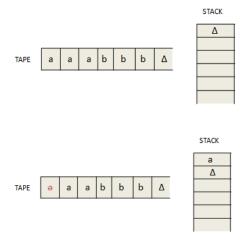
• How following PDA is working:



State	Stack	Tape
START	Δ	$aaabbb \ \Delta \Delta$
READ	Δ	a aabbb ∆∆
PUSH a	a Δ	$aabbb \Delta \Delta$
READ	а Δ	$aaabbb \ \triangle \triangle$

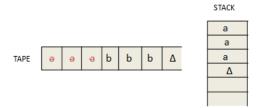
PUSH a	аа Δ	aa abbb ∆∆
READ	аа Δ	aaa bbb ∆∆
PUSH a	ааа Δ	aaa bbb ∆∆
READ	ааа Δ	aaab bb ∆∆
POP	аа Δ	aaab bb ∆∆
READ	аа Δ	aaabb b △△
POP	a Δ	aaabb b △△
READ	a Δ	aaabbb ∆∆
POP	ΔΔ	aaabbb ∆∆
READ	ΔΔ	aaabbb ∆ ∆
POP	Δ	aaabbb ∆ ∆

- Its operation on the input string aaabbb.
- We begin by assuming that this string has been put on the TAPE.

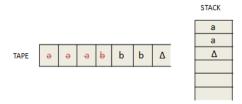


- We now read another a and proceed as before along the a edge to push it into the STACK.
- Again we are returned to the READ box.

Again we read an a (our third), and again this a is pushed onto the STACK.



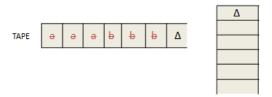
- After the third PUSH a, we are routed back to the same READ state again.
- This time, we read the letter b.
- This means that we take the b edge out of this state down to the lower left POP.



- The b road from the second READ state now takes us back to the edge feeding into the POP state.
- So we pop the STACK again and get another a.
- The STACK is now down to only one a.
- The a line from POP takes us again to this same READ.
- There is only one letter left on the input TAPE, a b

We read it and leave the TAPE empty, hat is, all blanks. However, the machine does
not yet know that the TAPE is empty.

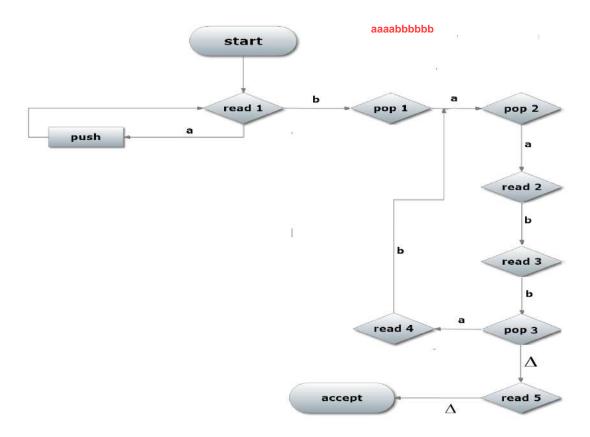
• It will discover this only when it next tries to read the TAPE and finds Δ .



Example

m=3,6,9,...

The language $a^n b^m$ where n = 2,4,6... and $m = n + \frac{n}{2}$



For example if we pass the word aabbb, then

State	Stack	Tape
Start	Δ	$aabbb \ \triangle \triangle \dots$
read1	Δ	a abbb △△

push a	а Δ	a abbb △△
read1	а Δ	aa bbb △△
push a	аа Δ	aa bbb △△
read1	аа Δ	aabbb △△
pop1	а Δ	aabbb △△
pop2	Δ	aabbb △△
read2	Δ	aabbb △△
read3	Δ	<i>aabbb</i> ∆∆
pop3	Δ	aabbb △△
read5	Δ	aabbb ∆ Δ
accept	Δ	<i>aabbb</i> ∆∆

Example:

Consider the following CFG in CNF:

$$S \rightarrow SB \mid AB$$

$$A \rightarrow CC$$

$$B \rightarrow b$$

$$C \rightarrow a$$

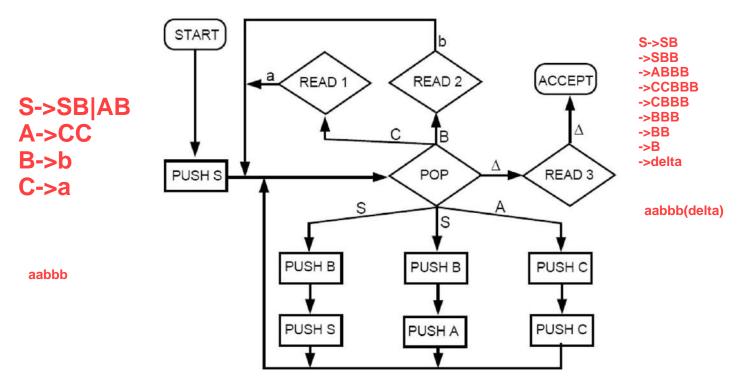
We now propose the following nondeterministic PDA where the STACK alphabet is

$$\Gamma = \{S, A, B, C\}$$

and the TAPE alphabet is only

$$\sum = \{a, b\}$$

Solution



To verify the solution, let pass some word from this PDA, then we can see that

$$S \Rightarrow SB$$

$$S \Rightarrow ABBB$$

$$S \Rightarrow aabbb$$

Now according to given CFG, word aabbb belongs to the CFG

State	Stack	Tape
START	Δ	aabbb △△
PUSH S	SΔ	aabbb △△
POP	Δ	aabbb ∆∆

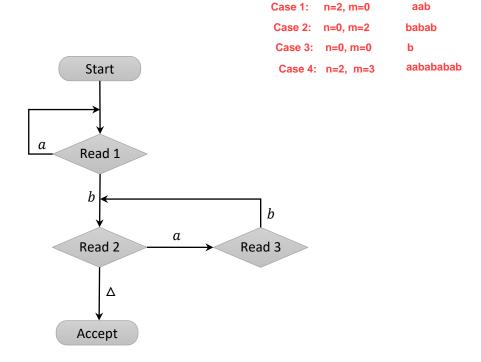
PUSH B	ВΔ	aabbb △△
PUSH S	SΒΔ	aabbb △△
POP	ВΔ	$aabbb \ \Delta \Delta \$
PUSH B	ВВΔ	$aabbb \ \Delta \Delta \$
PUSH S	SBB A	$aabbb \ \Delta \Delta \dots$
POP	ВВΔ	$aabbb \Delta \Delta$
PUSH B	ВВВ Δ	$aabbb \Delta \Delta \dots$
PUSH A	ABBB a	$aabbb \Delta \Delta$
POP	ВВВ Δ	$aabbb \ \Delta \Delta \$
PUSH C	CBBB∆	$aabbb \Delta \Delta$
PUSH C	ССВВВА	$aabbb \ \Delta \Delta \$
POP	СВВВА	$aabbb \ \Delta \Delta \$
READ 1	СВВВА	a abbb ΔΔ
POP	ВВВ Δ	a abbb ΔΔ
READ 1	ВВВ Δ	aa bbb ∆∆
POP	ВВΔ	aa bbb △△
READ 2	ВВΔ	aabbb △△
POP	ВΔ	aabbb △△
READ 2	ВΔ	aabbb △△

POP	Δ	$aabbb \triangle \triangle$
READ 2	Δ	<i>aabbb</i> ∆∆
POP	Δ	aabbb △△
READ 3	Δ	aabbb ∆∆
ACCEPT	Δ	aabbb ∆∆

Example

The language $a^n b(ab)^m$ where $n, m \ge 0$

Solution



Now let suppose we want to pass the word aabababab to check our solution, then

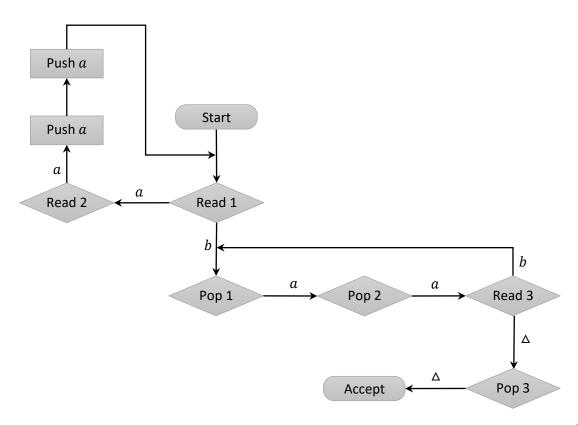
State	Stack	Tape
Start	Δ	$aabababab \ \Delta \Delta \$

Read1	Δ	a abababab ∆∆
Read 1	Δ	aa bababab ∆∆
Read 1	Δ	aabababab △△
Read 2	Δ	aabababab ∆∆
Read 3	Δ	aabababab △△
Read 2	Δ	aabababab △△
Read 3	Δ	aababab ab ∆∆
Read 2	Δ	aabababa b ∆∆
Read 3	Δ	aabababab ∆∆
Read 2	Δ	aabababab ∆ ∆
Accept	Δ	<i>aabababab</i> ∆∆

Example

The language $a^{2n}b^n$ where n > 0

Solution



Now to check our solution, let the word of the given language taken is aaaabb, then this word will pass through the following criteria

State	Stack	Tape
Start	Δ	aaaabb △△
Read1	Δ	a aaabb ∆∆
Read 2	Δ	aa aabb ΔΔ
Push a	а Δ	aaabb △△
Push a	аа Δ	aa αabb ΔΔ

Read 1	аа Δ	aaaabb △△
Read 2	aa Δ	aaaabb △△
Push a	ааа Δ	aaaabb △△
Push a	аааа Δ	aaaabb △△
Read 1	аааа Δ	aaaabb ∆∆
Pop 1	ааа Δ	aaaabb ∆∆
Pop 2	aa Δ	aaaabb △△
Read 3	aa Δ	aaaabb ∆∆
Pop 1	а Δ	aaaabb ∆∆
Pop 2	Δ	aaaabb ∆∆
Read 3	Δ	aaaabb ∆∆
Pop 3	Δ	aaaabb ∆∆
Accept	Δ	aaaabb ∆∆
L		1

-: ASSIGNMENT:-

Question No. 1

Draw the PDA for the language $a^n b(ab)^m$ where $n, m \ge 1$

Question No. 2

Draw the PDA for the CFG

$$S \rightarrow aS \mid abX$$

$$X \rightarrow abX \mid ab$$